The weakly solvable radical and locally strongly algebraic derivations of locally generalized special Lie algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 89-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the classical theorem on the image of the solvable radical of a finite-dimensional Lie algebra over a field of characteristic zero under the action of its derivation is generalized to locally generalized special Lie algebras.
@article{FPM_2020_23_2_a5,
     author = {A. Yu. Golubkov},
     title = {The weakly solvable radical and locally strongly algebraic derivations of locally generalized special {Lie} algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {89--99},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a5/}
}
TY  - JOUR
AU  - A. Yu. Golubkov
TI  - The weakly solvable radical and locally strongly algebraic derivations of locally generalized special Lie algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 89
EP  - 99
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a5/
LA  - ru
ID  - FPM_2020_23_2_a5
ER  - 
%0 Journal Article
%A A. Yu. Golubkov
%T The weakly solvable radical and locally strongly algebraic derivations of locally generalized special Lie algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 89-99
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a5/
%G ru
%F FPM_2020_23_2_a5
A. Yu. Golubkov. The weakly solvable radical and locally strongly algebraic derivations of locally generalized special Lie algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 89-99. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a5/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR

[2] Beidar K. I., Pikhtilkov S. A., “Pervichnyi radikal spetsialnykh algebr Li”, Fundament. i prikl. matem., 6:3 (2000), 643–648 | MR | Zbl

[3] Golubkov A. Yu., “Lokalnaya konechnost algebr”, Fundament. i prikl. matem., 19:6 (2014), 25–75

[4] Golubkov A. Yu., “Konstruktsii spetsialnykh radikalov”, Fundament. i prikl. matem., 20:1 (2015), 57–133

[5] Golubkov A. Yu., “Radikal Kostrikina i podobnye emu radikaly algebr Li”, Fundament. i prikl. matem., 21:2 (2016), 157–180

[6] Dzhekobson N., Algebry Li, Mir, M., 1964

[7] Dzhekobson N., Stroenie kolets, Izd. inostr. lit., M., 1961

[8] Zhevlakov K. A., Shestakov I. P., “O lokalnoi konechnosti v smysle Shirshova”, Algebra i logika, 12:1 (1973), 41–73 | MR

[9] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[10] Lvov I. V., Teorema Brauna o radikale konechno porozhdennoi PI-algebry, Preprint No 63, In-t matematiki SO AN SSSR, Novosibirsk, 1984 | Zbl

[11] Nikitin A. A., “Nasledstvennost radikalov kolets”, Algebra i logika, 17:3 (1978), 303–315 | MR

[12] Parfenov V. A., “O slabo razreshimom radikale algebr Li”, Sib. matem. zhurn., 12:1 (1971), 171–176 | MR | Zbl

[13] Plotkin B. I., “Ob algebraicheskikh mnozhestvakh elementov v gruppakh i algebrakh Li”, UMN, 13:6(84) (1958), 133–138 | MR | Zbl

[14] Amayo R. K., Stewart I. N., Infinite Dimensional Lie Algebras, Noordhoof, Leyden, 1974 | MR | Zbl

[15] Braun A., “The radical in finitely generated PI-algebra”, Bull. Amer. Math. Soc., 7:2 (1982), 385–386 | DOI | MR | Zbl

[16] Golubkov A. Yu., “The prime radical of the special Lie algebras and the elementary Chevalley groups”, Commun. Algebra, 32:5 (2004), 1649–1683 | MR | Zbl

[17] Rowen L. H., Polynomial Identities in Ring Theory, Pure and Appl. Math., 84, Academic Press, London, 1980 | MR | Zbl