On the maximum of a~Gaussian process with unique maximum point of its variance
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 161-174
Voir la notice de l'article provenant de la source Math-Net.Ru
Gaussian random processes whose variances reach their maximum values at unique points are considered. Exact asymptotic behavior of probabilities of large absolute maximums of their trajectories have been evaluated using the double sum method under the widest possible conditions.
@article{FPM_2020_23_1_a8,
author = {S. G. Kobelkov and V. I. Piterbarg and I. V. Rodionov and E. Hashorva},
title = {On the maximum of {a~Gaussian} process with unique maximum point of its variance},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {161--174},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a8/}
}
TY - JOUR AU - S. G. Kobelkov AU - V. I. Piterbarg AU - I. V. Rodionov AU - E. Hashorva TI - On the maximum of a~Gaussian process with unique maximum point of its variance JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 161 EP - 174 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a8/ LA - ru ID - FPM_2020_23_1_a8 ER -
%0 Journal Article %A S. G. Kobelkov %A V. I. Piterbarg %A I. V. Rodionov %A E. Hashorva %T On the maximum of a~Gaussian process with unique maximum point of its variance %J Fundamentalʹnaâ i prikladnaâ matematika %D 2020 %P 161-174 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a8/ %G ru %F FPM_2020_23_1_a8
S. G. Kobelkov; V. I. Piterbarg; I. V. Rodionov; E. Hashorva. On the maximum of a~Gaussian process with unique maximum point of its variance. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 161-174. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a8/