Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2020_23_1_a8, author = {S. G. Kobelkov and V. I. Piterbarg and I. V. Rodionov and E. Hashorva}, title = {On the maximum of {a~Gaussian} process with unique maximum point of its variance}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {161--174}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a8/} }
TY - JOUR AU - S. G. Kobelkov AU - V. I. Piterbarg AU - I. V. Rodionov AU - E. Hashorva TI - On the maximum of a~Gaussian process with unique maximum point of its variance JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 161 EP - 174 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a8/ LA - ru ID - FPM_2020_23_1_a8 ER -
%0 Journal Article %A S. G. Kobelkov %A V. I. Piterbarg %A I. V. Rodionov %A E. Hashorva %T On the maximum of a~Gaussian process with unique maximum point of its variance %J Fundamentalʹnaâ i prikladnaâ matematika %D 2020 %P 161-174 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a8/ %G ru %F FPM_2020_23_1_a8
S. G. Kobelkov; V. I. Piterbarg; I. V. Rodionov; E. Hashorva. On the maximum of a~Gaussian process with unique maximum point of its variance. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 161-174. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a8/
[1] Piterbarg V. I., “O rabote Pikandsa «Veroyatnosti peresecheniya dlya gaussovskogo statsionarnogo protsessa»”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 5 (1972), 25–30 | Zbl
[2] Piterbarg V. I., Dvadtsat lektsii o gaussovskikh protsessakh, MTsNMO, M., 2015
[3] Piterbarg V. I., Prisyazhnyuk V. P., “Asimptotika veroyatnosti bolshogo vybrosa gaussovskogo nestatsionarnogo protsessa”, Teor. veroyatn. i matem. stat., 18 (1978), 121–134 | Zbl
[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967 | MR
[5] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[6] Dȩbicki K., Hashorva E., Liu P., “Extremes of Gaussian random fields with regularly varying dependence structure”, Extremes, 20 (2017), 333–392 | DOI | MR
[7] Geman D., Horowitz J., “Occupation densities”, Ann. Probab., 8:1 (1980), 1–67 | DOI | MR | Zbl
[8] Pickands J., III, “Upcrossing probabilities for Gaussian stationary processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | MR | Zbl
[9] Piterbarg V. I., Asymptotic Methods in Theory of Gaussian Random Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 2012 | DOI | MR
[10] Piterbarg V. I., Rodionov I. V., “High excursions of Bessel and related random processes”, Stoch. Proc. Appl., 130:8 (2020), 4859–4872 | DOI | MR | Zbl