Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2020_23_1_a6, author = {A. I. Zhdanov}, title = {High excursions of a~quadratic form for {a~Gaussian} stationary vector process}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {123--144}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/} }
TY - JOUR AU - A. I. Zhdanov TI - High excursions of a~quadratic form for a~Gaussian stationary vector process JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 123 EP - 144 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/ LA - ru ID - FPM_2020_23_1_a6 ER -
A. I. Zhdanov. High excursions of a~quadratic form for a~Gaussian stationary vector process. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 123-144. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/
[1] Zhdanov A. I., “Veroyatnosti vysokikh vybrosov traektorii proizvedeniya gaussovskikh statsionarnykh protsessov”, Teoriya veroyatn. i ee primen., 60:3 (2015), 605–613 | MR
[2] Zhdanov A. I., Piterbarg V. I., “Bolshie vybrosy protsessov gaussovskogo khaosa. Approksimatsiya v diskretnom vremeni”, Teoriya veroyatn. i ee primen., 63:1 (2018), 3–28 | MR | Zbl
[3] Korshunov D. A., Piterbarg V. I., Khashorva E., “Ob ekstremalnykh znacheniyakh gaussovskogo khaosa”, Dokl. Akad. nauk, 452:5 (2013), 483–485 | Zbl
[4] Korshunov D. A., Piterbarg V. I., Khashorva E., “Ob asimptoticheskom metode Laplasa i ego primenenii k sluchainomu khaosu”, Matem. zametki, 97:6 (2015), 868–883 | Zbl
[5] Piterbarg V. I., Stamatovich S., “Predelnaya teorema dlya $a$-vykhodov traektorii $\chi^{2}$-protsessa za vysokii uroven”, Teoriya veroyatn. i ee primen., 48:4 (2003), 811–818 | MR | Zbl
[6] Albin P., Hashorva E., Ji L., Ling C., Extremes and Limit Theorems for Difference of Chi-Type Processes, 2015, arXiv: 1508.02758 [math.PR] | MR
[7] Hashorva E., Korshunov D., Piterbarg V. I., “Asymptotic expansion of Gaussian chaos via probabilistic approach”, Extremes, 18:3 (2015), 315–347 | DOI | MR | Zbl
[8] Piterbarg V., “High deviations for multidimensional stationary Gaussian process with independent components”, Stability Problems for Stochastic Models, VSP, 1994, 197–230
[9] Piterbarg V. I., “High excursions for nonstationary generalized chi-square processes”, Stoch. Process Appl., 51 (1994), 307–337 | DOI | MR
[10] Piterbarg V. I., Asymptotic Methods in Theory of Gaussian Random Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 1996 | MR
[11] Piterbarg V. I., “High extrema of Gaussian chaos processes”, Extremes, 19:2 (2016), 253–272 | DOI | MR | Zbl
[12] Piterbarg V. I., Zhdanov A., “On probability of high extremes for product of two independent Gaussian stationary processes”, Extremes, 18:1 (2015), 99–108 | DOI | MR | Zbl