High excursions of a~quadratic form for a~Gaussian stationary vector process
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 123-144
Voir la notice de l'article provenant de la source Math-Net.Ru
Exact asymptotic behavior is given for high excursion probabilities of a quadratic form for a zero-mean Gaussian stationary vector process with Pickands' type covariance matrix in the vicinity of zero. The case of a quadratic form with a positive maximum eigenvalue of order 1 is considered.
@article{FPM_2020_23_1_a6,
author = {A. I. Zhdanov},
title = {High excursions of a~quadratic form for {a~Gaussian} stationary vector process},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {123--144},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/}
}
TY - JOUR AU - A. I. Zhdanov TI - High excursions of a~quadratic form for a~Gaussian stationary vector process JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 123 EP - 144 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/ LA - ru ID - FPM_2020_23_1_a6 ER -
A. I. Zhdanov. High excursions of a~quadratic form for a~Gaussian stationary vector process. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 123-144. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/