High excursions of a~quadratic form for a~Gaussian stationary vector process
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 123-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact asymptotic behavior is given for high excursion probabilities of a quadratic form for a zero-mean Gaussian stationary vector process with Pickands' type covariance matrix in the vicinity of zero. The case of a quadratic form with a positive maximum eigenvalue of order 1 is considered.
@article{FPM_2020_23_1_a6,
     author = {A. I. Zhdanov},
     title = {High excursions of a~quadratic form for {a~Gaussian} stationary vector process},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {123--144},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/}
}
TY  - JOUR
AU  - A. I. Zhdanov
TI  - High excursions of a~quadratic form for a~Gaussian stationary vector process
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 123
EP  - 144
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/
LA  - ru
ID  - FPM_2020_23_1_a6
ER  - 
%0 Journal Article
%A A. I. Zhdanov
%T High excursions of a~quadratic form for a~Gaussian stationary vector process
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 123-144
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/
%G ru
%F FPM_2020_23_1_a6
A. I. Zhdanov. High excursions of a~quadratic form for a~Gaussian stationary vector process. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 123-144. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a6/

[1] Zhdanov A. I., “Veroyatnosti vysokikh vybrosov traektorii proizvedeniya gaussovskikh statsionarnykh protsessov”, Teoriya veroyatn. i ee primen., 60:3 (2015), 605–613 | MR

[2] Zhdanov A. I., Piterbarg V. I., “Bolshie vybrosy protsessov gaussovskogo khaosa. Approksimatsiya v diskretnom vremeni”, Teoriya veroyatn. i ee primen., 63:1 (2018), 3–28 | MR | Zbl

[3] Korshunov D. A., Piterbarg V. I., Khashorva E., “Ob ekstremalnykh znacheniyakh gaussovskogo khaosa”, Dokl. Akad. nauk, 452:5 (2013), 483–485 | Zbl

[4] Korshunov D. A., Piterbarg V. I., Khashorva E., “Ob asimptoticheskom metode Laplasa i ego primenenii k sluchainomu khaosu”, Matem. zametki, 97:6 (2015), 868–883 | Zbl

[5] Piterbarg V. I., Stamatovich S., “Predelnaya teorema dlya $a$-vykhodov traektorii $\chi^{2}$-protsessa za vysokii uroven”, Teoriya veroyatn. i ee primen., 48:4 (2003), 811–818 | MR | Zbl

[6] Albin P., Hashorva E., Ji L., Ling C., Extremes and Limit Theorems for Difference of Chi-Type Processes, 2015, arXiv: 1508.02758 [math.PR] | MR

[7] Hashorva E., Korshunov D., Piterbarg V. I., “Asymptotic expansion of Gaussian chaos via probabilistic approach”, Extremes, 18:3 (2015), 315–347 | DOI | MR | Zbl

[8] Piterbarg V., “High deviations for multidimensional stationary Gaussian process with independent components”, Stability Problems for Stochastic Models, VSP, 1994, 197–230

[9] Piterbarg V. I., “High excursions for nonstationary generalized chi-square processes”, Stoch. Process Appl., 51 (1994), 307–337 | DOI | MR

[10] Piterbarg V. I., Asymptotic Methods in Theory of Gaussian Random Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 1996 | MR

[11] Piterbarg V. I., “High extrema of Gaussian chaos processes”, Extremes, 19:2 (2016), 253–272 | DOI | MR | Zbl

[12] Piterbarg V. I., Zhdanov A., “On probability of high extremes for product of two independent Gaussian stationary processes”, Extremes, 18:1 (2015), 99–108 | DOI | MR | Zbl