On maximum domain of attraction for transformations of normal random variable
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 207-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

Limit distributions of the maximum of independent copies of a transformation of a Gaussian random variable are studied. Sufficient and necessary conditions are found for the transformations belonging to Fréchet and Weibull maximum domains of attraction. Simple sufficient conditions are also given.
@article{FPM_2020_23_1_a11,
     author = {V. V. Troshin},
     title = {On maximum domain of attraction for transformations of normal random variable},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {207--215},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a11/}
}
TY  - JOUR
AU  - V. V. Troshin
TI  - On maximum domain of attraction for transformations of normal random variable
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 207
EP  - 215
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a11/
LA  - ru
ID  - FPM_2020_23_1_a11
ER  - 
%0 Journal Article
%A V. V. Troshin
%T On maximum domain of attraction for transformations of normal random variable
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 207-215
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a11/
%G ru
%F FPM_2020_23_1_a11
V. V. Troshin. On maximum domain of attraction for transformations of normal random variable. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 207-215. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a11/

[1] Piterbarg V. I., Mazur A. E., “Gaussovskie kopulnye vremennye ryady s tyazhelymi khvostami i silnoi vremennoi zavisimostyu”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 60:5 (2015), 3–7

[2] De Haan L., Ferreira A., Extreme Value Theory: An Introduction, Springer, New York, 2007 | MR

[3] Piterbarg V. I., Asymptotic Methods in Theory of Gaussian Random Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 2012 | DOI | MR

[4] Seneta E., Regularly Varying Functions, Lect. Notes Math., 508, Springer, Berlin, 1976 | DOI | MR | Zbl