Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2020_23_1_a11, author = {V. V. Troshin}, title = {On maximum domain of attraction for transformations of normal random variable}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {207--215}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a11/} }
TY - JOUR AU - V. V. Troshin TI - On maximum domain of attraction for transformations of normal random variable JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 207 EP - 215 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a11/ LA - ru ID - FPM_2020_23_1_a11 ER -
V. V. Troshin. On maximum domain of attraction for transformations of normal random variable. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 207-215. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a11/
[1] Piterbarg V. I., Mazur A. E., “Gaussovskie kopulnye vremennye ryady s tyazhelymi khvostami i silnoi vremennoi zavisimostyu”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 60:5 (2015), 3–7
[2] De Haan L., Ferreira A., Extreme Value Theory: An Introduction, Springer, New York, 2007 | MR
[3] Piterbarg V. I., Asymptotic Methods in Theory of Gaussian Random Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 2012 | DOI | MR
[4] Seneta E., Regularly Varying Functions, Lect. Notes Math., 508, Springer, Berlin, 1976 | DOI | MR | Zbl