Large deviations of weighted sums of independent identically distributed random variables with functionally-defined weights
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 191-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S_n=\sum\limits_{j=1}^n a_{j,n} X_{j,n}$ be a weighted sum with independent, identically distributed steps $X_{j,n}$, $j\le n$, where $a_{j,n} = f(j/n)$ for some $f\in C^2[0,1]$. Under Cramer's condition, we prove an integro-local limit theorem for $\mathbf P\bigl(S_n\in [x,x+\Delta_n)\bigr)$ as $x/n\in [m^-,m^+]$ for some $m^-$$m^+$ and any sequence $\Delta_n$ tending to zero slowly enough. This result covers the whole scope of normal, moderate, and large deviations. For the stochastic process $Y_n(t)$, corresponding to $S_0,\ldots,S_n$, we obtain a conditional functional limit theorem concerning convergence $Y_n(t)$ to the Brownian bridge given the condition $S_n\in [x,x+\Delta_n)$.
@article{FPM_2020_23_1_a10,
     author = {I. V. Sobolev and A. V. Shklyaev},
     title = {Large deviations of weighted sums of independent identically distributed random variables with functionally-defined weights},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {191--206},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a10/}
}
TY  - JOUR
AU  - I. V. Sobolev
AU  - A. V. Shklyaev
TI  - Large deviations of weighted sums of independent identically distributed random variables with functionally-defined weights
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 191
EP  - 206
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a10/
LA  - ru
ID  - FPM_2020_23_1_a10
ER  - 
%0 Journal Article
%A I. V. Sobolev
%A A. V. Shklyaev
%T Large deviations of weighted sums of independent identically distributed random variables with functionally-defined weights
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 191-206
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a10/
%G ru
%F FPM_2020_23_1_a10
I. V. Sobolev; A. V. Shklyaev. Large deviations of weighted sums of independent identically distributed random variables with functionally-defined weights. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 191-206. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a10/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[2] Borovkov A. A., “Integro-lokalnye i lokalnye teoremy o normalnykh i bolshikh ukloneniyakh summ raznoraspredelennykh sluchainykh velichin v skheme serii”, Teoriya veroyatn. i ee primen., 54:4 (2009), 625–644

[3] Borovkov A. A., Teoriya veroyatnostei, Librokom, M., 2016

[4] Billingsley P., Probability and Measure, Wiley, New York, 1995 | MR | Zbl

[5] Book S., “Large deviation probabilities for weighted sums”, Ann. Math. Stat., 43:4 (1972), 1221–1234 | DOI | MR | Zbl