On estimation of the scale and location parameters of distribution tails
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 25-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimators of the location and scale parameters are proposed for tails of distributions belonging to the Gumbel or Frechèt maximum domain of attraction using only higher order statistics of the sample. The related problem for the Gumbel domain of attraction is considered for the first time.
@article{FPM_2020_23_1_a1,
     author = {P. I. Akhtyamov and I. V. Rodionov},
     title = {On estimation of the scale and location parameters of distribution tails},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {25--49},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a1/}
}
TY  - JOUR
AU  - P. I. Akhtyamov
AU  - I. V. Rodionov
TI  - On estimation of the scale and location parameters of distribution tails
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 25
EP  - 49
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a1/
LA  - ru
ID  - FPM_2020_23_1_a1
ER  - 
%0 Journal Article
%A P. I. Akhtyamov
%A I. V. Rodionov
%T On estimation of the scale and location parameters of distribution tails
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 25-49
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a1/
%G ru
%F FPM_2020_23_1_a1
P. I. Akhtyamov; I. V. Rodionov. On estimation of the scale and location parameters of distribution tails. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 25-49. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a1/

[1] Fedoryuk M. V., Metod perevala, Nauka, M., 1977

[2] Beirlant J., Bouquiaux C., Werker B., “Semiparametric lower bounds for tail-index estimation”, J. Statist. Plann. Inference, 136:3 (2006), 705–729 | DOI | MR | Zbl

[3] Beirlant T., Goegebeur Y., Teugels J., Statistics of Extremes. Theory and Applications, Wiley Ser. Probab. Stat., Wiley, London, 2004 | DOI | MR | Zbl

[4] Beirlant T., Teugels J. L., “Asymptotics of Hill's estimator”, Theory Probab. Appl., 31 (1986), 463–469 | DOI | MR

[5] Berred M., “Record values and the estimation of the Weibull tail-coefficient”, Compt. Rend. Acad. Sci., 312:1 (1991), 943–946 | MR | Zbl

[6] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Encyclopedia of Mathematics and Its Application, 27, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[7] Diebolt J., Gardes L., Girard S., Guillou A., “Bias-reduced estimators of the Weibull tail-coefficient”, Test, 17 (2008), 311–331 | DOI | MR | Zbl

[8] Drees H., Ferreira A., de Haan L., “On maximum likelihood estimation of the extreme value index”, Ann. Appl. Probab., 14 (2003), 1179–1201 | DOI | MR

[9] Drees H., de Haan L., Li D., “Approximations to the tail empirical distribution function with application to testing extreme value conditions”, J. Statist. Plann. Inference, 136:10 (2006), 3498–3538 | DOI | MR | Zbl

[10] Elandt-Johnson R., Johnson N., Survival Models and Data Analysis, Wiley, New York, 1999 | MR | Zbl

[11] Fraga Alves M. I., Gomes M. I., de Haan L., “A new class of semi-parametric estimators of the second order parameter”, Portugal. Math., 60 (2003), 193–213 | MR | Zbl

[12] Fraga Alves M. I., de Haan L., Lin T., “Estimation of the parameter controlling the speed of convergence in extreme value theory”, Math. Methods Statist., 12 (2003), 155–176 | MR

[13] Fraga Alves M. I., de Haan L., Neves C., “A test procedure for detecting super-heavy tails”, J. Statist. Plann. Inference, 138:2 (2009), 213–227 | MR

[14] Gardes L., Girard S., Guillou A., “Weibull tail-distributions revisited: a new look at some tail estimators”, J. Statist. Plann. Inference, 141:4 (2009), 429–444 | MR

[15] Gnedenko B. V., “Sur la distribution limite du terme maximum d'une serie aleatoire”, Ann. Math., 44 (1943), 423–453 | DOI | MR | Zbl

[16] De Haan L., Ferreira A., Extreme Value Theory: An Introduction, Springer, 2006 | MR | Zbl

[17] De Haan L., Resnick S., “Second-order regular variation and rates of convergence in extreme value theory”, Ann. Probab., 24:1 (1996), 97–124 | DOI | MR | Zbl

[18] De Haan L., Sinha A. K., “Estimating the probability of a rare event”, Ann. Statist., 27 (1999), 732–759 | DOI | MR | Zbl

[19] Hall P., “On some simple estimates of an exponent of regular variation”, J. Roy. Statist. Soc., Ser. B, 44 (1982), 37–42 | MR | Zbl

[20] Hill B. M., “A simple general approach to inference about the tail of a distribution”, Ann. Statist., 3 (1975), 1163–1174 | DOI | MR | Zbl

[21] Kaplan E. L., Meier P., “Nonparametric estimation from incomplete observations”, J. Amer. Statist. Assn., 53:282 (1958), 457–481 | DOI | MR | Zbl

[22] Martins M. J., Heavy tails estimation — variants to the Hill estimator, PhD thesis, Univ. of Lisbon, Portugal, 2000

[23] Pickands III J., “Statistical inference using extreme order statistics”, Ann. Statist., 3 (1975), 119–131 | DOI | MR | Zbl

[24] Rausand M., Hoyland A., System Reliability Theory: Models, Statistical Methods, and Applications, Wiley, Hoboken, 2004 | MR | Zbl

[25] Rodionov I. V., “Discrimination of close hypotheses about the distribution tails using higher order statistic”, Theory Probab. Its Appl., 63:3 (2019), 364–380 | DOI | MR | Zbl

[26] Rodionov I. V., “Inferences on parametric estimation of distribution tails”, Dokl. Math., 100:2 (2019), 456–458 | DOI | Zbl

[27] Rodionov I. V., “On estimation of Weibull-tail and log-Weibull-tail distributions for modeling end- to- end delay”, Distributed Computer and Communication Networks, 22nd Int. Conf., DCCN 2019, Revised Selected Papers (Moscow, Russia, September 23–27, 2019), Commun. Comput. Inform. Sci., 1141, Springer, Berlin, 2019, 302–314 | DOI

[28] Smith R. L., “Estimating tails of probability distributions”, Ann. Statist., 15 (1987), 1174–1207 | DOI | MR | Zbl