Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2020_23_1_a1, author = {P. I. Akhtyamov and I. V. Rodionov}, title = {On estimation of the scale and location parameters of distribution tails}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {25--49}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a1/} }
TY - JOUR AU - P. I. Akhtyamov AU - I. V. Rodionov TI - On estimation of the scale and location parameters of distribution tails JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 25 EP - 49 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a1/ LA - ru ID - FPM_2020_23_1_a1 ER -
P. I. Akhtyamov; I. V. Rodionov. On estimation of the scale and location parameters of distribution tails. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 25-49. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a1/
[1] Fedoryuk M. V., Metod perevala, Nauka, M., 1977
[2] Beirlant J., Bouquiaux C., Werker B., “Semiparametric lower bounds for tail-index estimation”, J. Statist. Plann. Inference, 136:3 (2006), 705–729 | DOI | MR | Zbl
[3] Beirlant T., Goegebeur Y., Teugels J., Statistics of Extremes. Theory and Applications, Wiley Ser. Probab. Stat., Wiley, London, 2004 | DOI | MR | Zbl
[4] Beirlant T., Teugels J. L., “Asymptotics of Hill's estimator”, Theory Probab. Appl., 31 (1986), 463–469 | DOI | MR
[5] Berred M., “Record values and the estimation of the Weibull tail-coefficient”, Compt. Rend. Acad. Sci., 312:1 (1991), 943–946 | MR | Zbl
[6] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Encyclopedia of Mathematics and Its Application, 27, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[7] Diebolt J., Gardes L., Girard S., Guillou A., “Bias-reduced estimators of the Weibull tail-coefficient”, Test, 17 (2008), 311–331 | DOI | MR | Zbl
[8] Drees H., Ferreira A., de Haan L., “On maximum likelihood estimation of the extreme value index”, Ann. Appl. Probab., 14 (2003), 1179–1201 | DOI | MR
[9] Drees H., de Haan L., Li D., “Approximations to the tail empirical distribution function with application to testing extreme value conditions”, J. Statist. Plann. Inference, 136:10 (2006), 3498–3538 | DOI | MR | Zbl
[10] Elandt-Johnson R., Johnson N., Survival Models and Data Analysis, Wiley, New York, 1999 | MR | Zbl
[11] Fraga Alves M. I., Gomes M. I., de Haan L., “A new class of semi-parametric estimators of the second order parameter”, Portugal. Math., 60 (2003), 193–213 | MR | Zbl
[12] Fraga Alves M. I., de Haan L., Lin T., “Estimation of the parameter controlling the speed of convergence in extreme value theory”, Math. Methods Statist., 12 (2003), 155–176 | MR
[13] Fraga Alves M. I., de Haan L., Neves C., “A test procedure for detecting super-heavy tails”, J. Statist. Plann. Inference, 138:2 (2009), 213–227 | MR
[14] Gardes L., Girard S., Guillou A., “Weibull tail-distributions revisited: a new look at some tail estimators”, J. Statist. Plann. Inference, 141:4 (2009), 429–444 | MR
[15] Gnedenko B. V., “Sur la distribution limite du terme maximum d'une serie aleatoire”, Ann. Math., 44 (1943), 423–453 | DOI | MR | Zbl
[16] De Haan L., Ferreira A., Extreme Value Theory: An Introduction, Springer, 2006 | MR | Zbl
[17] De Haan L., Resnick S., “Second-order regular variation and rates of convergence in extreme value theory”, Ann. Probab., 24:1 (1996), 97–124 | DOI | MR | Zbl
[18] De Haan L., Sinha A. K., “Estimating the probability of a rare event”, Ann. Statist., 27 (1999), 732–759 | DOI | MR | Zbl
[19] Hall P., “On some simple estimates of an exponent of regular variation”, J. Roy. Statist. Soc., Ser. B, 44 (1982), 37–42 | MR | Zbl
[20] Hill B. M., “A simple general approach to inference about the tail of a distribution”, Ann. Statist., 3 (1975), 1163–1174 | DOI | MR | Zbl
[21] Kaplan E. L., Meier P., “Nonparametric estimation from incomplete observations”, J. Amer. Statist. Assn., 53:282 (1958), 457–481 | DOI | MR | Zbl
[22] Martins M. J., Heavy tails estimation — variants to the Hill estimator, PhD thesis, Univ. of Lisbon, Portugal, 2000
[23] Pickands III J., “Statistical inference using extreme order statistics”, Ann. Statist., 3 (1975), 119–131 | DOI | MR | Zbl
[24] Rausand M., Hoyland A., System Reliability Theory: Models, Statistical Methods, and Applications, Wiley, Hoboken, 2004 | MR | Zbl
[25] Rodionov I. V., “Discrimination of close hypotheses about the distribution tails using higher order statistic”, Theory Probab. Its Appl., 63:3 (2019), 364–380 | DOI | MR | Zbl
[26] Rodionov I. V., “Inferences on parametric estimation of distribution tails”, Dokl. Math., 100:2 (2019), 456–458 | DOI | Zbl
[27] Rodionov I. V., “On estimation of Weibull-tail and log-Weibull-tail distributions for modeling end- to- end delay”, Distributed Computer and Communication Networks, 22nd Int. Conf., DCCN 2019, Revised Selected Papers (Moscow, Russia, September 23–27, 2019), Commun. Comput. Inform. Sci., 1141, Springer, Berlin, 2019, 302–314 | DOI
[28] Smith R. L., “Estimating tails of probability distributions”, Ann. Statist., 15 (1987), 1174–1207 | DOI | MR | Zbl