Equitable colorings of hypergraphs with $r$ colors
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a problem concerning equitable vertex colorings of uniform hypergraphs, i.e., colorings under which there are no monochromatic edges and simultaneously all the color classes have almost the same cardinalities. We obtain a new bound on the edge number of an $n$-uniform hypergraph that guarantees the existence of an equitable vertex coloring with $r$ colors for this hypergraph.
@article{FPM_2020_23_1_a0,
     author = {M. Akhmejanova and D. A. Shabanov},
     title = {Equitable colorings of hypergraphs with $r$ colors},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a0/}
}
TY  - JOUR
AU  - M. Akhmejanova
AU  - D. A. Shabanov
TI  - Equitable colorings of hypergraphs with $r$ colors
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 3
EP  - 23
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a0/
LA  - ru
ID  - FPM_2020_23_1_a0
ER  - 
%0 Journal Article
%A M. Akhmejanova
%A D. A. Shabanov
%T Equitable colorings of hypergraphs with $r$ colors
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 3-23
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a0/
%G ru
%F FPM_2020_23_1_a0
M. Akhmejanova; D. A. Shabanov. Equitable colorings of hypergraphs with $r$ colors. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a0/

[1] Akolzin I. A., “O spravedlivykh raskraskakh prostykh gipergrafov”, Tr. MFTI, 9:4 (2017), 161–173

[2] Demidovich Yu. A., Raigorodskii A. M., “Dvukhtsvetnye raskraski odnorodnykh gipergrafov”, Matem. zametki, 100:4 (2016), 623–626 | MR | Zbl

[3] Akhmejanova M., Shabanov D. A., “Colorings of b-simple hypergraphs”, Electron. Notes Discrete Math., 61 (2017), 29–35 | DOI | Zbl

[4] Akolzin I. A., Shabanov D. A., “Colorings of hypergraphs with large number of colors”, Discrete Math., 339:12 (2016), 3020–3031 | DOI | MR | Zbl

[5] Cherkashin D., “A note on panchromatic colorings”, Discrete Math., 341:3 (2018), 652–657 | DOI | MR | Zbl

[6] Cherkashin D., Kozik J., “A note on random greedy coloring of uniform hypergraphs”, Random Struct. Algorithms, 47:3 (2015), 407–413 | DOI | MR | Zbl

[7] Erdős P., “On a combinatorial problem, II”, Acta Math. Academy of Sciences, Hungary, 15:3 (1964), 445–447 | MR | Zbl

[8] Erdős P., “Problem 9”, Theory of Graphs and Its Applications, ed. M. Fieldler, Czech. Acad. Sci. Publ., Prague, 1964, 159 | MR

[9] Hajnal A., Szemeredi E., “Proof of a conjecture of P. Erdős”, Combinatorial Theory and Its Applications, v. 2, North-Holland, London, 1969, 601–623 | MR

[10] Kostochka A. V., “Coloring uniform hypegraphs with few colors”, Random Structures Algorithms, 24 (2010), 1–10 | DOI | MR

[11] Raigorodskii A. M., Shabanov D. A., “The Erdős–Hajnal problem of hypergraph colouring, its generalizations and related problems”, Russ. Math. Surv., 66:5 (2011), 933–1002 | DOI | MR | Zbl

[12] Shabanov D. A., “Equitable two-colorings of uniform hypergraphs”, Eur. J. Combin., 43 (2015), 185–203 | DOI | MR | Zbl