Bifurcations of binary types of Steiner minimal networks in the plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 227-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a continuation of the paper “Bifurcations of Steiner tree topologies in the plane,” where topologies of Steiner networks of a fixed binary type are considered. Here bifurcation diagrams of binary types of Steiner minimal networks for four boundary points are constructed and some properties of such diagrams for any number of points are discussed.
@article{FPM_2019_22_6_a9,
     author = {E. I. Stepanova},
     title = {Bifurcations of binary types of {Steiner} minimal networks in the plane},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {227--252},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a9/}
}
TY  - JOUR
AU  - E. I. Stepanova
TI  - Bifurcations of binary types of Steiner minimal networks in the plane
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 227
EP  - 252
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a9/
LA  - ru
ID  - FPM_2019_22_6_a9
ER  - 
%0 Journal Article
%A E. I. Stepanova
%T Bifurcations of binary types of Steiner minimal networks in the plane
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 227-252
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a9/
%G ru
%F FPM_2019_22_6_a9
E. I. Stepanova. Bifurcations of binary types of Steiner minimal networks in the plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 227-252. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a9/

[1] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR

[2] Ivanov A. O., Tuzhilin A. A., “Differentsialnoe ischislenie na prostranstve minimalnykh derevev Shteinera v rimanovykh mnogoobraziyakh”, Matem. sb., 192:6 (2001), 31–50 | DOI | Zbl

[3] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003 | MR

[4] Karpunin G. A., “Analog teorii Morsa dlya ploskikh lineinykh setei i obobschennaya problema Shteinera”, Matem. sb., 191:5 (2000), 64–90 | DOI | MR | Zbl

[5] Stepanova E. I., “Bifurkatsii topologii derevev Shteinera na ploskosti”, Fundament. i prikl. matem., 21:6 (2016), 183–204 | MR

[6] Bopp K., Über das kürzeste Verbindungssystem zwischen vier Punkten, Thesis, Univ. Göttingen, 1879

[7] Brazil M., Graham R. L., Thomas D., Zachariasen M., “On the history of the Euclidean Steiner tree problem”, Arch. History Exact Sci., 68:3 (2014), 327–354 | DOI | MR | Zbl

[8] Cockayne E. J., Schiller D. G., “Computation of Steiner minimal trees”, Combinatorics, eds. D. J. A. Welsh, D. R. Woodal, Inst. Math. Appl., 1972, 53–71 | MR

[9] Courant R., Robbins H., What is mathematics?, Oxford Univ. Press, 1941 | MR

[10] Du D. Z., Hwang F. K., Song G. D., Ting G. Y., “Steiner minimal trees on sets of four points”, Discrete Comput. Geom., 2 (1987), 401–414 | DOI | MR | Zbl

[11] De Fermat P., Oeuvres, v. 1, Paris, 1891 | Zbl

[12] Gergonne J. D., “Solutions purement géométriques des problèmes de minimis proposés aux pages 196, 232 et 292 de ce volume, et de divers autres problèmes analogues”, Ann. Math. Pures Appl., 1 (1811), 375–384

[13] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl

[14] Hwang F. K., Richards D. S., Winter P., “The Steiner Tree Problem”, Ann. Discrete Math., 53 (1992) | MR | Zbl

[15] Jarník V., Kössler O., “O minimálních grafech obsahujících $n$ daných bodů”, Čas. Pěst. Mat. Fys., 63:8 (1934), 223–235

[16] Melzak Z. A., “On the problem of Steiner”, Can. Math. Bull., 4 (1961), 143–148 | DOI | MR | Zbl

[17] Ollerenshaw K., “Minimal networks linking four points in a plane”, Inst. Math. Appl., 15 (1978), 208–211 | MR

[18] Pollak H. O., “Some remarks on the Steiner problem”, J. Combin. Theor., Ser. A, 24 (1978), 278–295 | DOI | MR | Zbl

[19] Weng J. F., “Variational approach and Steiner minimal trees on four points”, Discrete Math., 132:1–3 (1994), 349–362 | DOI | MR | Zbl