Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2019_22_6_a9, author = {E. I. Stepanova}, title = {Bifurcations of binary types of {Steiner} minimal networks in the plane}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {227--252}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a9/} }
E. I. Stepanova. Bifurcations of binary types of Steiner minimal networks in the plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 227-252. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a9/
[1] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR
[2] Ivanov A. O., Tuzhilin A. A., “Differentsialnoe ischislenie na prostranstve minimalnykh derevev Shteinera v rimanovykh mnogoobraziyakh”, Matem. sb., 192:6 (2001), 31–50 | DOI | Zbl
[3] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003 | MR
[4] Karpunin G. A., “Analog teorii Morsa dlya ploskikh lineinykh setei i obobschennaya problema Shteinera”, Matem. sb., 191:5 (2000), 64–90 | DOI | MR | Zbl
[5] Stepanova E. I., “Bifurkatsii topologii derevev Shteinera na ploskosti”, Fundament. i prikl. matem., 21:6 (2016), 183–204 | MR
[6] Bopp K., Über das kürzeste Verbindungssystem zwischen vier Punkten, Thesis, Univ. Göttingen, 1879
[7] Brazil M., Graham R. L., Thomas D., Zachariasen M., “On the history of the Euclidean Steiner tree problem”, Arch. History Exact Sci., 68:3 (2014), 327–354 | DOI | MR | Zbl
[8] Cockayne E. J., Schiller D. G., “Computation of Steiner minimal trees”, Combinatorics, eds. D. J. A. Welsh, D. R. Woodal, Inst. Math. Appl., 1972, 53–71 | MR
[9] Courant R., Robbins H., What is mathematics?, Oxford Univ. Press, 1941 | MR
[10] Du D. Z., Hwang F. K., Song G. D., Ting G. Y., “Steiner minimal trees on sets of four points”, Discrete Comput. Geom., 2 (1987), 401–414 | DOI | MR | Zbl
[11] De Fermat P., Oeuvres, v. 1, Paris, 1891 | Zbl
[12] Gergonne J. D., “Solutions purement géométriques des problèmes de minimis proposés aux pages 196, 232 et 292 de ce volume, et de divers autres problèmes analogues”, Ann. Math. Pures Appl., 1 (1811), 375–384
[13] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl
[14] Hwang F. K., Richards D. S., Winter P., “The Steiner Tree Problem”, Ann. Discrete Math., 53 (1992) | MR | Zbl
[15] Jarník V., Kössler O., “O minimálních grafech obsahujících $n$ daných bodů”, Čas. Pěst. Mat. Fys., 63:8 (1934), 223–235
[16] Melzak Z. A., “On the problem of Steiner”, Can. Math. Bull., 4 (1961), 143–148 | DOI | MR | Zbl
[17] Ollerenshaw K., “Minimal networks linking four points in a plane”, Inst. Math. Appl., 15 (1978), 208–211 | MR
[18] Pollak H. O., “Some remarks on the Steiner problem”, J. Combin. Theor., Ser. A, 24 (1978), 278–295 | DOI | MR | Zbl
[19] Weng J. F., “Variational approach and Steiner minimal trees on four points”, Discrete Math., 132:1–3 (1994), 349–362 | DOI | MR | Zbl