On triangular changes of bases in the $\mod p$ Steenrod algebra
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 183-200
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss which transition matrices between some pairs of additive bases
of the $\mod p$ Steenrod algebra with the Bockstein element are triangular.
@article{FPM_2019_22_6_a7,
author = {T. V. Ovchinnikova and F. Yu. Popelensky},
title = {On triangular changes of bases in the $\mod p$ {Steenrod} algebra},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {183--200},
publisher = {mathdoc},
volume = {22},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a7/}
}
TY - JOUR AU - T. V. Ovchinnikova AU - F. Yu. Popelensky TI - On triangular changes of bases in the $\mod p$ Steenrod algebra JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2019 SP - 183 EP - 200 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a7/ LA - ru ID - FPM_2019_22_6_a7 ER -
T. V. Ovchinnikova; F. Yu. Popelensky. On triangular changes of bases in the $\mod p$ Steenrod algebra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 183-200. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a7/