On triangular changes of bases in the $\mod p$ Steenrod algebra
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 183-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss which transition matrices between some pairs of additive bases of the $\mod p$ Steenrod algebra with the Bockstein element are triangular.
@article{FPM_2019_22_6_a7,
     author = {T. V. Ovchinnikova and F. Yu. Popelensky},
     title = {On triangular changes of bases in the $\mod p$ {Steenrod} algebra},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {183--200},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a7/}
}
TY  - JOUR
AU  - T. V. Ovchinnikova
AU  - F. Yu. Popelensky
TI  - On triangular changes of bases in the $\mod p$ Steenrod algebra
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 183
EP  - 200
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a7/
LA  - ru
ID  - FPM_2019_22_6_a7
ER  - 
%0 Journal Article
%A T. V. Ovchinnikova
%A F. Yu. Popelensky
%T On triangular changes of bases in the $\mod p$ Steenrod algebra
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 183-200
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a7/
%G ru
%F FPM_2019_22_6_a7
T. V. Ovchinnikova; F. Yu. Popelensky. On triangular changes of bases in the $\mod p$ Steenrod algebra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 183-200. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a7/

[1] Emelyanov D. Yu., “O bazisakh Vuda algebry Stinroda $\mod p$”, Fundament. i prikl. matem., 20:3 (2015), 83–90

[2] Emelyanov D. Yu., Popelenskii F. Yu., “O zamenakh bazisov v algebre Stinroda $\mod p$”, Matem. sb., 208:4 (2017), 3–16 | DOI | Zbl

[3] Arnon D., “Monomial bases in the Steenrod algebra”, J. Pure Appl. Algebra, 96 (1994), 215–223 | DOI | MR | Zbl

[4] Emelyanov D. Yu., Popelensky Th. Yu., “On monomial bases in the $\mod p$ Steenrod algebra”, J. Fixed Point Theory Appl., 17:2 (2015), 341–353 | DOI | MR | Zbl

[5] Emelyanov D. Yu., Popelensky Th. Yu., “On monomial bases in the $\mod p$ Steenrod algebra, $\beta$ included”, J. Pure Appl. Algebra, 223:8 (2019), 3386–4301 | DOI | MR

[6] Karaça I., Tanai B., The change of bases in the $\mod p$ Steenrod algebra, Preprint | MR

[7] Milnor J., “The Steenrod algebra and its dual”, Ann. Math., 67:1 (1958), 150–171 | DOI | MR | Zbl

[8] Monks K. G., “Change of basis, monomial relations, and $P^t_s$ bases for the Steenrod algebra”, J. Pure Appl. Algebra, 125:1 (1998), 235–260 | DOI | MR | Zbl

[9] Palmieri J., Zhang J. J., “Commutators in the Steenrod algebra”, New York J. Math., 19 (2013), 23–37 | MR | Zbl

[10] Wall C. T. C., “Generators and relations for the Steenrod algebra”, Ann. Math., 72:2 (1960), 429–444 | DOI | MR | Zbl