Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 263-272

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we investigate the structure of the metric space $\mathcal M$ of compact metric spaces considered up to an isometry and endowed with the Gromov–Hausdorff metric in a neighbourhood of a finite metric space, whose isometry group is trivial. It is shown that a sufficiently small ball in the subspace of $\mathcal M$ consisting of finite spaces with the same number of points centered at such a space is isometric to a corresponding ball in the space $\mathbb R^N$ endowed with the norm $|(x_1, \dots, x_N ) | = \max\limits_{i} |x_i|$. Also an isometric embedding of a finite metric space into a neighbourhood of a finite asymmetric space in $\mathcal M$ is constructed.
@article{FPM_2019_22_6_a11,
     author = {A. M. Filin},
     title = {Local geometry of the {Gromov--Hausdorff} metric space and totally asymmetric finite metric spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {263--272},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/}
}
TY  - JOUR
AU  - A. M. Filin
TI  - Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 263
EP  - 272
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/
LA  - ru
ID  - FPM_2019_22_6_a11
ER  - 
%0 Journal Article
%A A. M. Filin
%T Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 263-272
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/
%G ru
%F FPM_2019_22_6_a11
A. M. Filin. Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 263-272. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/