Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 263-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we investigate the structure of the metric space $\mathcal M$ of compact metric spaces considered up to an isometry and endowed with the Gromov–Hausdorff metric in a neighbourhood of a finite metric space, whose isometry group is trivial. It is shown that a sufficiently small ball in the subspace of $\mathcal M$ consisting of finite spaces with the same number of points centered at such a space is isometric to a corresponding ball in the space $\mathbb R^N$ endowed with the norm $|(x_1, \dots, x_N ) | = \max\limits_{i} |x_i|$. Also an isometric embedding of a finite metric space into a neighbourhood of a finite asymmetric space in $\mathcal M$ is constructed.
@article{FPM_2019_22_6_a11,
     author = {A. M. Filin},
     title = {Local geometry of the {Gromov--Hausdorff} metric space and totally asymmetric finite metric spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {263--272},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/}
}
TY  - JOUR
AU  - A. M. Filin
TI  - Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 263
EP  - 272
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/
LA  - ru
ID  - FPM_2019_22_6_a11
ER  - 
%0 Journal Article
%A A. M. Filin
%T Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 263-272
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/
%G ru
%F FPM_2019_22_6_a11
A. M. Filin. Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 263-272. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/

[1] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyut. issl., M.–Izhevsk, 2004

[2] Ivanov A. O., Tuzhilin A. A., Geometriya rasstoyanii Khausdorfa i Gromova–Khausdorfa: sluchai kompaktov, Izd. Popechit. soveta mekh.-mat. fak. MGU, M., 2017

[3] Chowdhury S., Memoli F., Constructing Geodesics on the Space of Compact Metric Spaces, 2016, arXiv: 1603.02385

[4] Iliadis S., Ivanov A., Tuzhilin A., “Local structure of Gromov–Hausdorff space, and isometric embeddings of finite metric spaces into this space”, Topology Its Appl., 221 (2017), 393–398 | DOI | MR | Zbl

[5] Ivanov O., Iliadis S., Tuzhilin A., Realizations of Gromov–Hausdorff Distance, 2016, arXiv: 1603.08850 | MR

[6] Ivanov A., Tuzhilin A., Isometry Group of Gromov–Hausdorff Space, 2018, arXiv: 1806.02100 | MR

[7] Kuratowski C., “Quelques problèmes concernant les espaces métriques non-séparables”, Fund. Math., 25 (1935), 534–545 | DOI

[8] http://mathoverflow.net/questions/135184/for-which-metricspaces-is-gromov-hausdorff-distance-actually-achieved?rq=1