Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 263-272
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we investigate the structure of the metric space $\mathcal M$ of compact metric spaces considered up to an isometry and endowed with the Gromov–Hausdorff metric in a neighbourhood of a finite metric space, whose isometry group is trivial. It is shown that a sufficiently small ball in the subspace of $\mathcal M$ consisting of finite spaces with the same number of points centered at such a space is isometric to a corresponding ball in the space $\mathbb R^N$ endowed with the norm $|(x_1, \dots, x_N ) | = \max\limits_{i} |x_i|$. Also an isometric embedding of a finite metric space into a neighbourhood of a finite asymmetric space in $\mathcal M$ is constructed.
@article{FPM_2019_22_6_a11,
author = {A. M. Filin},
title = {Local geometry of the {Gromov--Hausdorff} metric space and totally asymmetric finite metric spaces},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {263--272},
publisher = {mathdoc},
volume = {22},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/}
}
TY - JOUR AU - A. M. Filin TI - Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2019 SP - 263 EP - 272 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/ LA - ru ID - FPM_2019_22_6_a11 ER -
A. M. Filin. Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 263-272. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/