Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2019_22_6_a11, author = {A. M. Filin}, title = {Local geometry of the {Gromov--Hausdorff} metric space and totally asymmetric finite metric spaces}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {263--272}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/} }
TY - JOUR AU - A. M. Filin TI - Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2019 SP - 263 EP - 272 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/ LA - ru ID - FPM_2019_22_6_a11 ER -
A. M. Filin. Local geometry of the Gromov--Hausdorff metric space and totally asymmetric finite metric spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 6, pp. 263-272. http://geodesic.mathdoc.fr/item/FPM_2019_22_6_a11/
[1] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyut. issl., M.–Izhevsk, 2004
[2] Ivanov A. O., Tuzhilin A. A., Geometriya rasstoyanii Khausdorfa i Gromova–Khausdorfa: sluchai kompaktov, Izd. Popechit. soveta mekh.-mat. fak. MGU, M., 2017
[3] Chowdhury S., Memoli F., Constructing Geodesics on the Space of Compact Metric Spaces, 2016, arXiv: 1603.02385
[4] Iliadis S., Ivanov A., Tuzhilin A., “Local structure of Gromov–Hausdorff space, and isometric embeddings of finite metric spaces into this space”, Topology Its Appl., 221 (2017), 393–398 | DOI | MR | Zbl
[5] Ivanov O., Iliadis S., Tuzhilin A., Realizations of Gromov–Hausdorff Distance, 2016, arXiv: 1603.08850 | MR
[6] Ivanov A., Tuzhilin A., Isometry Group of Gromov–Hausdorff Space, 2018, arXiv: 1806.02100 | MR
[7] Kuratowski C., “Quelques problèmes concernant les espaces métriques non-séparables”, Fund. Math., 25 (1935), 534–545 | DOI