Abelian groups with finitely approximated acts
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 81-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Abelian groups of each of the following classes are completely described: ($*$) class of Abelian groups such that all the acts over them are finitely approximated, ($**$) Abelian groups such that all the acts over them are approximated by the acts consisting of $n$ or less elements, where $n$ is some natural number. In particular, a group belongs to the class ($**$) if and only if it is bounded.
@article{FPM_2019_22_5_a8,
     author = {I. B. Kozhukhov and A. V. Tsarev},
     title = {Abelian groups with finitely approximated acts},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {81--89},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a8/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - A. V. Tsarev
TI  - Abelian groups with finitely approximated acts
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 81
EP  - 89
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a8/
LA  - ru
ID  - FPM_2019_22_5_a8
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A A. V. Tsarev
%T Abelian groups with finitely approximated acts
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 81-89
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a8/
%G ru
%F FPM_2019_22_5_a8
I. B. Kozhukhov; A. V. Tsarev. Abelian groups with finitely approximated acts. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 81-89. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a8/

[1] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, 2, Mir, M., 1972

[2] Kozhukhov I. B., “Polugruppy, nad kotorymi vse poligony rezidualno konechny”, Fundament. i prikl. matem., 4:4 (1998), 1335–1344 | MR | Zbl

[3] Kozhukhov I. B., “Usloviya konechnosti dlya podpryamo nerazlozhimykh poligonov i modulei”, Fundament. i prikl. matem., 4:2 (1998), 763–767 | MR | Zbl

[4] Kozhukhov I. B., Khaliullina A. R., “Polugruppy s finitno approksimiruemymi poligonami”, Matem. zametki SVFU, 21(83):3 (2014), 60–67 | Zbl

[5] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[6] Kulikov L. Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Matem. sb., 9(51):1 (1941), 165–181

[7] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[8] Arnold D. M., Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, New York, 1982 | DOI | MR | Zbl

[9] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[10] Kozhukhov I. B., “One characteristical property of semilattices”, Commun. Algebra, 25:8 (1997), 2569–2577 | DOI | MR | Zbl