@article{FPM_2019_22_5_a8,
author = {I. B. Kozhukhov and A. V. Tsarev},
title = {Abelian groups with finitely approximated acts},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {81--89},
year = {2019},
volume = {22},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a8/}
}
I. B. Kozhukhov; A. V. Tsarev. Abelian groups with finitely approximated acts. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 81-89. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a8/
[1] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, 2, Mir, M., 1972
[2] Kozhukhov I. B., “Polugruppy, nad kotorymi vse poligony rezidualno konechny”, Fundament. i prikl. matem., 4:4 (1998), 1335–1344 | MR | Zbl
[3] Kozhukhov I. B., “Usloviya konechnosti dlya podpryamo nerazlozhimykh poligonov i modulei”, Fundament. i prikl. matem., 4:2 (1998), 763–767 | MR | Zbl
[4] Kozhukhov I. B., Khaliullina A. R., “Polugruppy s finitno approksimiruemymi poligonami”, Matem. zametki SVFU, 21(83):3 (2014), 60–67 | Zbl
[5] Kon P., Universalnaya algebra, Mir, M., 1968 | MR
[6] Kulikov L. Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Matem. sb., 9(51):1 (1941), 165–181
[7] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974
[8] Arnold D. M., Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, New York, 1982 | DOI | MR | Zbl
[9] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl
[10] Kozhukhov I. B., “One characteristical property of semilattices”, Commun. Algebra, 25:8 (1997), 2569–2577 | DOI | MR | Zbl