The lattice of fully invariant subgroups of a~cotorsion group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 65-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

For separable $p$-groups, the questions concerning the full transitivity and description of the lattice of fully invariant subgroups of the cotorsion hull are discussed. We consider the case in which the cotorsion hull is not fully transitive, and construct a function, different from the indicator, that makes it possible to study the lattice of fully invariant subgroups of a cotorsion group.
@article{FPM_2019_22_5_a6,
     author = {T. G. Kemoklidze},
     title = {The lattice of fully invariant subgroups of a~cotorsion group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {65--73},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a6/}
}
TY  - JOUR
AU  - T. G. Kemoklidze
TI  - The lattice of fully invariant subgroups of a~cotorsion group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 65
EP  - 73
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a6/
LA  - ru
ID  - FPM_2019_22_5_a6
ER  - 
%0 Journal Article
%A T. G. Kemoklidze
%T The lattice of fully invariant subgroups of a~cotorsion group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 65-73
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a6/
%G ru
%F FPM_2019_22_5_a6
T. G. Kemoklidze. The lattice of fully invariant subgroups of a~cotorsion group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 65-73. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a6/

[1] Baer R., “Type of elements and characteristic subgroups of Abelian groups”, Proc. London Math. Soc. (2), 39 (1935), 481–514 | DOI | MR

[2] Chekhlov A. R., “On projective invariant subgroups of Abelian groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2009:1 (2009), 31–36 | MR

[3] Fuchs L., Infinite Abelian Groups, v. I, Pure Appl. Math., 36, Academic Press, London, 1970 | MR | Zbl

[4] Fuchs L., Infinite Abelian Groups, v. II, Pure Appl. Math., 36-II, Academic Press, London, 1973 | MR | Zbl

[5] Fuchs L., Salce L., Modules over non-Noetherian Domains, Math. Surveys Monographs, 84, Amer. Math. Soc., Providence, 2001 | MR | Zbl

[6] Göbel R., “The characteristic subgroups of the Baer–Specker group”, Math. Z., 140:3 (1974), 289–292 | DOI | MR | Zbl

[7] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups”, J. Math. Sci., 128:3 (2005), 2894–2997 | DOI | MR | Zbl

[8] Harrison D. K., “Infinite Abelian groups and homological methods”, Ann. Math. (2), 69 (1959), 366–391 | DOI | MR | Zbl

[9] Hill P., Megibben Ch., “Minimal pure subgroups in primary groups”, Bull. Soc. Math. France, 92 (1964), 251–257 | DOI | MR | Zbl

[10] Kaplansky I., Infinite Abelian Groups, Univ. Michigan Press, Ann Arbor, 1969 | MR | Zbl

[11] Kemoklidze T., “On the full transitivity of a cotorsion hull”, Georgian Math. J., 13:1 (2006), 79–84 | DOI | MR | Zbl

[12] Kemoklidze T., “The lattice of fully invariant subgroups of a reduced cotorsion group”, Proc. A. Razmadze Math. Inst., 152 (2010), 43–58 | MR | Zbl

[13] Kemoklidze T., “The lattice of fully invariant subgroups of the cotorsion hull”, Adv. Pure Math., 3:8 (2013), 670–679 | DOI | MR

[14] Kemoklidze T., “On the full transitivity of a cotorsion hull of the Pierce group”, Adv. Pure Math., 4:3 (2014), 76–81 | DOI | MR

[15] Linton R. S., “On fully invariant subgroups of primary Abelian groups”, Michigan Math. J., 22:3 (1976), 281–284 | DOI | MR | Zbl

[16] Mader A., “The fully invariant subgroups of reduced algebraically compact groups”, Publ. Math. Debrecen, 17 (1970), 299–306 | MR

[17] May W., Toubassi E., “Endomorphisms of Abelian groups and the theorem of Baer and Kaplansky”, J. Algebra, 43:1 (1976), 1–13 | DOI | MR | Zbl

[18] Misyakov V. M., “On the complete transitivity of reduced Abelian groups”, Abelian Groups Modules, 1994, no. 11–12, 134–156 | MR | Zbl

[19] Moore J. D., Hewett E. J., “On fully invariant subgroups of Abelian $p$-groups”, Comment. Math. Univ. St. Paul., 20 (1971/72), 97–106 | MR

[20] Moskalenko A. I., “Cotorsion hull of a separable group”, Algebra Logika, 28:2 (1989), 207–226 | DOI | MR | Zbl

[21] Moskalenko A. I., “On pure completely characteristic subgroups of a coperiodic group”, Abelian Groups Modules, 1994, no. 11–12, 157–165 ; 257 | MR | Zbl

[22] Pierce R. S., “Homomorphisms of primary Abelian groups”, Topics in Abelian Groups, Proc. Sympos. (New Mexico State Univ, 1962), Scott, Foresman and Co., Chicago, 1963, 215–310 | MR