Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2019_22_5_a6, author = {T. G. Kemoklidze}, title = {The lattice of fully invariant subgroups of a~cotorsion group}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {65--73}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a6/} }
T. G. Kemoklidze. The lattice of fully invariant subgroups of a~cotorsion group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 65-73. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a6/
[1] Baer R., “Type of elements and characteristic subgroups of Abelian groups”, Proc. London Math. Soc. (2), 39 (1935), 481–514 | DOI | MR
[2] Chekhlov A. R., “On projective invariant subgroups of Abelian groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2009:1 (2009), 31–36 | MR
[3] Fuchs L., Infinite Abelian Groups, v. I, Pure Appl. Math., 36, Academic Press, London, 1970 | MR | Zbl
[4] Fuchs L., Infinite Abelian Groups, v. II, Pure Appl. Math., 36-II, Academic Press, London, 1973 | MR | Zbl
[5] Fuchs L., Salce L., Modules over non-Noetherian Domains, Math. Surveys Monographs, 84, Amer. Math. Soc., Providence, 2001 | MR | Zbl
[6] Göbel R., “The characteristic subgroups of the Baer–Specker group”, Math. Z., 140:3 (1974), 289–292 | DOI | MR | Zbl
[7] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups”, J. Math. Sci., 128:3 (2005), 2894–2997 | DOI | MR | Zbl
[8] Harrison D. K., “Infinite Abelian groups and homological methods”, Ann. Math. (2), 69 (1959), 366–391 | DOI | MR | Zbl
[9] Hill P., Megibben Ch., “Minimal pure subgroups in primary groups”, Bull. Soc. Math. France, 92 (1964), 251–257 | DOI | MR | Zbl
[10] Kaplansky I., Infinite Abelian Groups, Univ. Michigan Press, Ann Arbor, 1969 | MR | Zbl
[11] Kemoklidze T., “On the full transitivity of a cotorsion hull”, Georgian Math. J., 13:1 (2006), 79–84 | DOI | MR | Zbl
[12] Kemoklidze T., “The lattice of fully invariant subgroups of a reduced cotorsion group”, Proc. A. Razmadze Math. Inst., 152 (2010), 43–58 | MR | Zbl
[13] Kemoklidze T., “The lattice of fully invariant subgroups of the cotorsion hull”, Adv. Pure Math., 3:8 (2013), 670–679 | DOI | MR
[14] Kemoklidze T., “On the full transitivity of a cotorsion hull of the Pierce group”, Adv. Pure Math., 4:3 (2014), 76–81 | DOI | MR
[15] Linton R. S., “On fully invariant subgroups of primary Abelian groups”, Michigan Math. J., 22:3 (1976), 281–284 | DOI | MR | Zbl
[16] Mader A., “The fully invariant subgroups of reduced algebraically compact groups”, Publ. Math. Debrecen, 17 (1970), 299–306 | MR
[17] May W., Toubassi E., “Endomorphisms of Abelian groups and the theorem of Baer and Kaplansky”, J. Algebra, 43:1 (1976), 1–13 | DOI | MR | Zbl
[18] Misyakov V. M., “On the complete transitivity of reduced Abelian groups”, Abelian Groups Modules, 1994, no. 11–12, 134–156 | MR | Zbl
[19] Moore J. D., Hewett E. J., “On fully invariant subgroups of Abelian $p$-groups”, Comment. Math. Univ. St. Paul., 20 (1971/72), 97–106 | MR
[20] Moskalenko A. I., “Cotorsion hull of a separable group”, Algebra Logika, 28:2 (1989), 207–226 | DOI | MR | Zbl
[21] Moskalenko A. I., “On pure completely characteristic subgroups of a coperiodic group”, Abelian Groups Modules, 1994, no. 11–12, 157–165 ; 257 | MR | Zbl
[22] Pierce R. S., “Homomorphisms of primary Abelian groups”, Topics in Abelian Groups, Proc. Sympos. (New Mexico State Univ, 1962), Scott, Foresman and Co., Chicago, 1963, 215–310 | MR