Correlation between $E$-groups and properties of $n$-multiplications on Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 55-63
In this paper, we consider multilinear maps of an Abelian group into itself ($n$-multiplications) and their properties. We obtain equivalent conditions for an Abelian group to be an $E$-group in terms of $n$-multiplications. A correlation between properties of $n$-multiplications on the Abelian group at various $n$ is found.
@article{FPM_2019_22_5_a5,
author = {O. A. Karpov},
title = {Correlation between $E$-groups and properties of $n$-multiplications on {Abelian} groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {55--63},
year = {2019},
volume = {22},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a5/}
}
O. A. Karpov. Correlation between $E$-groups and properties of $n$-multiplications on Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 55-63. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a5/
[1] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006
[2] Fuks L., Beskonechnye abelevy gruppy, v. 1, 2, Mir, M., 1974
[3] Arnold D. M., Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, Berlin, 1982 | DOI | MR | Zbl
[4] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Aust. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl