Correlation between $E$-groups and properties of $n$-multiplications on Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 55-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider multilinear maps of an Abelian group into itself ($n$-multiplications) and their properties. We obtain equivalent conditions for an Abelian group to be an $E$-group in terms of $n$-multiplications. A correlation between properties of $n$-multiplications on the Abelian group at various $n$ is found.
@article{FPM_2019_22_5_a5,
     author = {O. A. Karpov},
     title = {Correlation between $E$-groups and properties of $n$-multiplications on {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {55--63},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a5/}
}
TY  - JOUR
AU  - O. A. Karpov
TI  - Correlation between $E$-groups and properties of $n$-multiplications on Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 55
EP  - 63
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a5/
LA  - ru
ID  - FPM_2019_22_5_a5
ER  - 
%0 Journal Article
%A O. A. Karpov
%T Correlation between $E$-groups and properties of $n$-multiplications on Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 55-63
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a5/
%G ru
%F FPM_2019_22_5_a5
O. A. Karpov. Correlation between $E$-groups and properties of $n$-multiplications on Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 55-63. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a5/

[1] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006

[2] Fuks L., Beskonechnye abelevy gruppy, v. 1, 2, Mir, M., 1974

[3] Arnold D. M., Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, Berlin, 1982 | DOI | MR | Zbl

[4] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Aust. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl