Near isomorphism for countable rank torsion-free Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 17-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a near isomorphism is extended from finite-rank torsion-free Abelian groups to some classes of infinite-rank groups. The equivalence of different formulations of this notion for a certain class of countable-rank groups is proved.
@article{FPM_2019_22_5_a3,
     author = {E. A. Blagoveshchenskaya and A. V. Filimonov and A. E. Trifonov},
     title = {Near isomorphism for countable rank torsion-free {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {17--28},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a3/}
}
TY  - JOUR
AU  - E. A. Blagoveshchenskaya
AU  - A. V. Filimonov
AU  - A. E. Trifonov
TI  - Near isomorphism for countable rank torsion-free Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 17
EP  - 28
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a3/
LA  - ru
ID  - FPM_2019_22_5_a3
ER  - 
%0 Journal Article
%A E. A. Blagoveshchenskaya
%A A. V. Filimonov
%A A. E. Trifonov
%T Near isomorphism for countable rank torsion-free Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 17-28
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a3/
%G ru
%F FPM_2019_22_5_a3
E. A. Blagoveshchenskaya; A. V. Filimonov; A. E. Trifonov. Near isomorphism for countable rank torsion-free Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 17-28. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a3/

[1] Blagoveschenskaya E., “Pryamye razlozheniya lokalno pochti vpolne razlozhimykh grupp schetnogo ranga”, Chebyshevskii sb., 6:4 (2005), 24–47

[2] Blagoveschenskaya E., Pochti vpolne razlozhimye abelevy gruppy i ikh koltsa endomorfizmov, Matematika v Politekhnicheskom universitete, Izd. Politekh. univ., SPb., 2009

[3] Arnold D., Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, Berlin, 1982 | DOI | MR | Zbl

[4] Blagoveshchenskaya E., Göbel R., “Classification and direct decompositions of some Butler groups of countable rank”, Commun. Algebra, 30:7 (2002), 3403–3427 | DOI | MR | Zbl

[5] Blagoveshchenskaya E., Göbel R., Strüngmann L., “Classification of some Butler groups of infinite rank”, Commun. Algebra, 380 (2013), 1–17 | DOI | MR | Zbl

[6] Blagoveshchenskaya E., Kunetz D., “Direct decomposition theory of torsion-free Abelian groups of finite rank: graph method”, Lobachevskii J. Math., 39:1 (2018), 29–34 | DOI | MR | Zbl

[7] Blagoveshchenskaya E., Strüngmann L., “Near-isomorphism for a class of infinite rank torsion-free Abelian groups”, Commun. Algebra, 35 (2007), 1–18 | DOI | MR

[8] Blagoveshchenskaya E., Strüngmann L. H., “Direct decomposition theory under near-isomorphism for a class of infinite rank torsion-free Abelian groups”, J. Group Theory, 20:2 (2017), 325–346 | DOI | MR | Zbl

[9] Burkovsky R. G., Bronwald Yu., Andronikova D., Wehinger B., Krisch M., Jacobs J., Gambetti D., Roleder K., Majchrowski A., Filimonov A. V., Rudskoy A. I., Vakhrushev S. B., Tagantsev A. K., “Critical scattering and incommensurate phase transition in antiferroelectric Pb Zr O$_3$ under pressure”, Sci. Reports, 7 (2017), 41512 | DOI

[10] Fuchs L., Infinite Abelian Groups, v. 1, 2, Academic Press, London, 1970 | MR | Zbl

[11] Mader A., Almost Completely Decomposable Abelian Groups, Algebra, Logic Appl., 13, Gordon and Breach, Amsterdam, 1999 | MR

[12] Naberezhnov A. A., Porechnaya N., Nizhankovskii V., Filimonov A., Nacke B., “Morphology and magnetic properties of ferriferous two-phase sodium borosilicate glasses”, Sci. World J., 2014 (2014), 320451 | DOI