Algebraic Lie algebras of bounded degree
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 209-242

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the questions of coincidence of the basic nil-radicals on classes of algebraic Lie algebras and proves the local finite-dimensionality of Lie algebras with an algebraic adjoint representation of bounded degree over fields of sufficiently large positive characteristic.
@article{FPM_2019_22_5_a20,
     author = {A. Yu. Golubkov},
     title = {Algebraic {Lie} algebras of bounded degree},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--242},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a20/}
}
TY  - JOUR
AU  - A. Yu. Golubkov
TI  - Algebraic Lie algebras of bounded degree
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 209
EP  - 242
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a20/
LA  - ru
ID  - FPM_2019_22_5_a20
ER  - 
%0 Journal Article
%A A. Yu. Golubkov
%T Algebraic Lie algebras of bounded degree
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 209-242
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a20/
%G ru
%F FPM_2019_22_5_a20
A. Yu. Golubkov. Algebraic Lie algebras of bounded degree. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 209-242. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a20/