On weakly transitive torsion-free Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 191-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasi-homogeneous weakly transitive rank $2$ torsion-free groups are described, and any finite rank torsion-free group with strongly indecomposable pure subgroups is shown to be weakly transitive.
@article{FPM_2019_22_5_a18,
     author = {A. R. Chekhlov},
     title = {On weakly transitive torsion-free {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {191--194},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a18/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On weakly transitive torsion-free Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 191
EP  - 194
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a18/
LA  - ru
ID  - FPM_2019_22_5_a18
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On weakly transitive torsion-free Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 191-194
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a18/
%G ru
%F FPM_2019_22_5_a18
A. R. Chekhlov. On weakly transitive torsion-free Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 191-194. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a18/