Quasi-endomorphism rings of some quasi-decomposable
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 159-176

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a description of quasi-endomorphism rings of torsion-free Abelian groups $G$ of rank $4$, quasi-decomposable into a direct sum of groups $A_1$ and $A_2$ of rank $1$ and a strongly indecomposable group $B$ of rank $2$ in the case where the quasi-homomorphism group $\mathbb {Q} \otimes \operatorname{Hom}(A_2,B)$ has rank $2$.
@article{FPM_2019_22_5_a16,
     author = {A. V. Cherednikova},
     title = {Quasi-endomorphism rings of some quasi-decomposable},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--176},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a16/}
}
TY  - JOUR
AU  - A. V. Cherednikova
TI  - Quasi-endomorphism rings of some quasi-decomposable
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 159
EP  - 176
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a16/
LA  - ru
ID  - FPM_2019_22_5_a16
ER  - 
%0 Journal Article
%A A. V. Cherednikova
%T Quasi-endomorphism rings of some quasi-decomposable
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 159-176
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a16/
%G ru
%F FPM_2019_22_5_a16
A. V. Cherednikova. Quasi-endomorphism rings of some quasi-decomposable. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 159-176. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a16/