Quasi-endomorphism rings of some quasi-decomposable
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 159-176
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a description of quasi-endomorphism rings of torsion-free
Abelian groups $G$ of rank $4$, quasi-decomposable into a direct sum of
groups $A_1$ and $A_2$ of rank $1$ and a strongly indecomposable group $B$ of rank $2$
in the case where the quasi-homomorphism group
$\mathbb {Q} \otimes \operatorname{Hom}(A_2,B)$ has rank $2$.
@article{FPM_2019_22_5_a16,
author = {A. V. Cherednikova},
title = {Quasi-endomorphism rings of some quasi-decomposable},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {159--176},
publisher = {mathdoc},
volume = {22},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a16/}
}
A. V. Cherednikova. Quasi-endomorphism rings of some quasi-decomposable. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 5, pp. 159-176. http://geodesic.mathdoc.fr/item/FPM_2019_22_5_a16/