Invariants of classical braids valued in $G_{n}^{2}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 137-146
Voir la notice de l'article provenant de la source Math-Net.Ru
The aim of the present note is to enhance groups $G_{n}^{3}$ and to construct new invariants of classical braids. In particular, we construct invariants valued in $G_{N}^{2}$ groups. In groups $G_{n}^{2}$, the identity problem is solved; besides, their structure is much simpler than that of $G_{n}^{3}$.
@article{FPM_2019_22_4_a9,
author = {V. O. Manturov},
title = {Invariants of classical braids valued in $G_{n}^{2}$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {137--146},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a9/}
}
V. O. Manturov. Invariants of classical braids valued in $G_{n}^{2}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 137-146. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a9/