Invariants of classical braids valued in $G_{n}^{2}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 137-146

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present note is to enhance groups $G_{n}^{3}$ and to construct new invariants of classical braids. In particular, we construct invariants valued in $G_{N}^{2}$ groups. In groups $G_{n}^{2}$, the identity problem is solved; besides, their structure is much simpler than that of $G_{n}^{3}$.
@article{FPM_2019_22_4_a9,
     author = {V. O. Manturov},
     title = {Invariants of classical braids valued in $G_{n}^{2}$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a9/}
}
TY  - JOUR
AU  - V. O. Manturov
TI  - Invariants of classical braids valued in $G_{n}^{2}$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 137
EP  - 146
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a9/
LA  - ru
ID  - FPM_2019_22_4_a9
ER  - 
%0 Journal Article
%A V. O. Manturov
%T Invariants of classical braids valued in $G_{n}^{2}$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 137-146
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a9/
%G ru
%F FPM_2019_22_4_a9
V. O. Manturov. Invariants of classical braids valued in $G_{n}^{2}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 137-146. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a9/