Invariants of classical braids valued in $G_{n}^{2}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 137-146
The aim of the present note is to enhance groups $G_{n}^{3}$ and to construct new invariants of classical braids. In particular, we construct invariants valued in $G_{N}^{2}$ groups. In groups $G_{n}^{2}$, the identity problem is solved; besides, their structure is much simpler than that of $G_{n}^{3}$.
@article{FPM_2019_22_4_a9,
author = {V. O. Manturov},
title = {Invariants of classical braids valued in $G_{n}^{2}$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {137--146},
year = {2019},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a9/}
}
V. O. Manturov. Invariants of classical braids valued in $G_{n}^{2}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 137-146. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a9/
[1] Manturov V. O., “O gruppakh $G_{n}^{2}$ i gruppakh Kokstera”, UMN, 72:2 (2017), 234–235
[2] Bardakov V. G., “The virtual and universal braids”, Fund. Math., 184 (2004), 1–18 | MR | Zbl
[3] Manturov V. O., Non-Reidemeister Knot Theory and Its Applications in Dynamical Systems, Geometry, and Topology, arXiv: 1501.05208
[4] Manturov V. O., “The groups $G_{n}^{k}$ and fundamental groups of configuration spaces”, J. Knot Theory Ramifications, 26 (2017) | MR
[5] Manturov V. O., Nikonov I. M., “On braids and groups $G_{n}^{k}$”, J. Knot Theory Ramifications, 24:13 (2015) | MR