On the cardinality of relator sets of groups $F/\prod [N_i,N_j]$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 129-136
Voir la notice de l'article provenant de la source Math-Net.Ru
The present paper generalizes the results of our paper "On the finite presentability of the group $F/[M,N]$" to an arbitrary family of normal subgroups $\{N_i \mid i\in I\}$ in a free group $F$. We obtain conditions for finite presentability of the quotient group $F/\prod [N_i,N_j]$. In both papers, the proof of the main result is based on the properties of verbal wreath products introduced by Alfred Lvovich Shmel'kin.
@article{FPM_2019_22_4_a8,
author = {O. V. Kulikova and A. Yu. Olshanskii},
title = {On the cardinality of relator sets of groups $F/\prod [N_i,N_j]$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {129--136},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a8/}
}
TY - JOUR AU - O. V. Kulikova AU - A. Yu. Olshanskii TI - On the cardinality of relator sets of groups $F/\prod [N_i,N_j]$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2019 SP - 129 EP - 136 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a8/ LA - ru ID - FPM_2019_22_4_a8 ER -
O. V. Kulikova; A. Yu. Olshanskii. On the cardinality of relator sets of groups $F/\prod [N_i,N_j]$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 129-136. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a8/