@article{FPM_2019_22_4_a4,
author = {L. A. Beklaryan},
title = {On massive subsets in the space of finitely generated groups of diffeomorphisms of the line and the circle in the case of $C^{(1)}$ smoothness},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {51--74},
year = {2019},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a4/}
}
TY - JOUR
AU - L. A. Beklaryan
TI - On massive subsets in the space of finitely generated groups of diffeomorphisms of the line and the circle in the case of $C^{(1)}$ smoothness
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2019
SP - 51
EP - 74
VL - 22
IS - 4
UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a4/
LA - ru
ID - FPM_2019_22_4_a4
ER -
%0 Journal Article
%A L. A. Beklaryan
%T On massive subsets in the space of finitely generated groups of diffeomorphisms of the line and the circle in the case of $C^{(1)}$ smoothness
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 51-74
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a4/
%G ru
%F FPM_2019_22_4_a4
L. A. Beklaryan. On massive subsets in the space of finitely generated groups of diffeomorphisms of the line and the circle in the case of $C^{(1)}$ smoothness. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 51-74. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a4/
[1] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978
[2] Beklaryan L. A., “Gruppy gomeomorfizmov pryamoi i okruzhnosti. Topologicheskie kharakteristiki i metricheskie invarianty”, Uspekhi matem. nauk, 59:4 (2004), 3–68 | MR | Zbl
[3] Beklaryan L. A., Vvedenie v teoriyu funktsionalno-differentsionalnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007
[4] Beklaryan L. A., “O massivnykh podmnozhestvakh v prostranstve konechno-porozhdennykh grupp diffeomorfizmov okruzhnosti”, Matem. zametki, 92:2 (2012), 825–833
[5] Beklaryan L. A., “Group specialties in the problem of the maximum principle for systems with deviating argument”, J. Dynam. Control Systems, 18:3 (2012), 419–432 | MR | Zbl