On elementary and geometric equivalence of equational co-domains
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 229-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the class of equational co-domains is not closed under elementary and geometric equivalence. We find corresponding counter-examples in predicate and functional languages.
@article{FPM_2019_22_4_a14,
     author = {A. N. Shevlyakov},
     title = {On elementary and geometric equivalence of equational co-domains},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {229--238},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a14/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - On elementary and geometric equivalence of equational co-domains
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 229
EP  - 238
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a14/
LA  - ru
ID  - FPM_2019_22_4_a14
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T On elementary and geometric equivalence of equational co-domains
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 229-238
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a14/
%G ru
%F FPM_2019_22_4_a14
A. N. Shevlyakov. On elementary and geometric equivalence of equational co-domains. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 229-238. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a14/

[1] Daniyarova E. Yu., Myasnikov A. G., Remeslennikov V. N., “Algebraicheskaya geometriya nad algebraicheskimi sistemami. VIII. Geometricheskie ekvivalentnosti i osobye klassy algebraicheskikh sistem”, Fundament. i prikl. matem., 22:4 (2019), 75–100

[2] Daniyarova E. Yu., Myasnikov A. G., Remeslennikov V. N., Algebraicheskaya geometriya nad algebraicheskimi sistemami, Izd-vo SO RAN, Novosibirsk, 2016

[3] Shevlyakov A. N., Lectures notes in universal algebraic geometry, arXiv: 1601.02743