The group of quotients of the semigroup of invertible nonnegative matrices over local rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 167-188
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that for a linearly ordered local ring $R$ with $1/2$ the group of quotients of the semigroup of invertible nonnegative matrices $\mathrm G_n(R)$ for $n \geq 3$ coincides with the group $\mathrm{GL}_n(R)$.
@article{FPM_2019_22_4_a11,
author = {V. V. Nemiro},
title = {The group of quotients of the semigroup of invertible nonnegative matrices over local rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {167--188},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a11/}
}
TY - JOUR AU - V. V. Nemiro TI - The group of quotients of the semigroup of invertible nonnegative matrices over local rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2019 SP - 167 EP - 188 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a11/ LA - ru ID - FPM_2019_22_4_a11 ER -
V. V. Nemiro. The group of quotients of the semigroup of invertible nonnegative matrices over local rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 167-188. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a11/