The group of quotients of the semigroup of invertible nonnegative matrices over local rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 167-188

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that for a linearly ordered local ring $R$ with $1/2$ the group of quotients of the semigroup of invertible nonnegative matrices $\mathrm G_n(R)$ for $n \geq 3$ coincides with the group $\mathrm{GL}_n(R)$.
@article{FPM_2019_22_4_a11,
     author = {V. V. Nemiro},
     title = {The group of quotients of the semigroup of invertible nonnegative matrices over local rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {167--188},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a11/}
}
TY  - JOUR
AU  - V. V. Nemiro
TI  - The group of quotients of the semigroup of invertible nonnegative matrices over local rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2019
SP  - 167
EP  - 188
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a11/
LA  - ru
ID  - FPM_2019_22_4_a11
ER  - 
%0 Journal Article
%A V. V. Nemiro
%T The group of quotients of the semigroup of invertible nonnegative matrices over local rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2019
%P 167-188
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a11/
%G ru
%F FPM_2019_22_4_a11
V. V. Nemiro. The group of quotients of the semigroup of invertible nonnegative matrices over local rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2019) no. 4, pp. 167-188. http://geodesic.mathdoc.fr/item/FPM_2019_22_4_a11/