On the shape of a high excursion of a Gaussian stationary process
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 119-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the shape of an excursion above a high level $u$ by a stationary Gaussian process. The shape depends on the conditioned mean and covariances of the underlying process. The paths vary slightly around a deterministic trend. The probability of such event can be determined asymptotically exactly for $u\rightarrow\infty$.
@article{FPM_2018_22_3_a6,
     author = {E. V. Kremena},
     title = {On the shape of a high excursion of a {Gaussian} stationary process},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a6/}
}
TY  - JOUR
AU  - E. V. Kremena
TI  - On the shape of a high excursion of a Gaussian stationary process
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 119
EP  - 125
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a6/
LA  - ru
ID  - FPM_2018_22_3_a6
ER  - 
%0 Journal Article
%A E. V. Kremena
%T On the shape of a high excursion of a Gaussian stationary process
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 119-125
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a6/
%G ru
%F FPM_2018_22_3_a6
E. V. Kremena. On the shape of a high excursion of a Gaussian stationary process. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 119-125. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a6/

[1] Belyaev Yu. K., Nosko V. P., “Kharakteristiki vybrosov za vysokii uroven gaussovskogo protsessa i ego ogibayuschei”, Teoriya veroyatn. i ee primen., 14:2 (1969), 302–314

[2] Nosko V. P., “Lokalnaya struktura odnorodnogo gaussovskogo sluchainogo polya v okrestnosti tochek vysokogo urovnya”, Teoriya veroyatn. i ee primen., 30:4 (1985), 722–736 | MR

[3] Nosko V. P., “Asimptoticheskie raspredeleniya kharakteristik vybrosov odnorodnogo gaussovskogo sluchainogo polya za vysokii uroven”, Teoriya veroyatn. i ee primen., 32:4 (1987), 722–733 | MR

[4] Leadbetter M. R., Lindgren G., Rootzen H., Extremes and Related Properties of Random Sequences and Processes, Springer, Berlin, 1983 | MR | Zbl

[5] Lindgren G., “Some properties of a normal process near a local maximum”, Ann. Math. Stat., 41 (1971), 1870–1883 | DOI | MR

[6] Pickands J., “Upcrossing probabilities for stationary Gaussian processes”, Trans. Am. Math. Soc., 145 (1969), 51–73 | DOI | MR | Zbl

[7] Piterbarg V. I., Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr., Amer. Math. Soc., Providence, 1996 | MR