Ruin probability for a Gaussian process with variance attaining its maximum on discrete sets
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 83-90
Ruin probability for a Gaussian locally stationary process is considered in the case where the process variance attains its maximum in a finite number of points. The double sum method is applied to calculate exact asymptotics of the corresponding probability. Also, we consider a family of processes with variance that has a countable set of maximum points containing a limit point.
@article{FPM_2018_22_3_a4,
author = {S. G. Kobelkov},
title = {Ruin probability for {a~Gaussian} process with variance attaining its maximum on discrete sets},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {83--90},
year = {2018},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a4/}
}
TY - JOUR AU - S. G. Kobelkov TI - Ruin probability for a Gaussian process with variance attaining its maximum on discrete sets JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 83 EP - 90 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a4/ LA - ru ID - FPM_2018_22_3_a4 ER -
S. G. Kobelkov. Ruin probability for a Gaussian process with variance attaining its maximum on discrete sets. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 83-90. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a4/
[1] Piterbarg V. I., “O rabote Pikandsa «Veroyatnosti peresecheniya dlya gaussovskogo statsionarnogo protsessa»”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1972, no. 5, 25–30 | Zbl
[2] Piterbarg V. I., Asimptoticheskie metody v teorii gaussovskikh sluchainykh protsessov i polei, Izd-vo Mosk. un-ta, M., 1988
[3] Piterbarg V. I., Prisyazhnyuk V. P., “Tochnaya asimptotika veroyatnosti bolshogo razmakha gaussovskogo statsionarnogo protsessa”, Teoriya veroyatn. i ee primen., 26:3 (1981), 480–495 | MR | Zbl
[4] Pickands J., “Upcrossing probabilities for Gaussian stationary processes”, Trans. Am. Math. Soc., 145 (1969), 51–73 | DOI | MR | Zbl