On the $s$-colorful number of a~random hypergraph
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 191-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of finding the $s$-colorful number of a random hypergraph in the binomial model. For different probabilities of the edge appearance, we establish asymptotic bounds for the $s$-colorful numbers, which hold with probability tending to $1$.
@article{FPM_2018_22_3_a10,
     author = {D. A. Shabanov},
     title = {On the $s$-colorful number of a~random hypergraph},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {191--199},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a10/}
}
TY  - JOUR
AU  - D. A. Shabanov
TI  - On the $s$-colorful number of a~random hypergraph
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 191
EP  - 199
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a10/
LA  - ru
ID  - FPM_2018_22_3_a10
ER  - 
%0 Journal Article
%A D. A. Shabanov
%T On the $s$-colorful number of a~random hypergraph
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 191-199
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a10/
%G ru
%F FPM_2018_22_3_a10
D. A. Shabanov. On the $s$-colorful number of a~random hypergraph. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 191-199. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a10/

[1] Kupavskii A. B., Shabanov D. A., “Raskraski chastichnykh sistem Shteinera i ikh prilozheniya”, Fundament. i prikl. matem., 18:3 (2013), 77–115

[2] Shabanov D. A., “O suschestvovanii polnotsvetnykh raskrasok dlya ravnomernykh gipergrafov”, Matem. sb., 201:4 (2010), 137–160 | DOI | Zbl

[3] Shabanov D. A., “O kontsentratsii khromaticheskogo chisla sluchainogo gipergrafa”, Dokl. RAN, 475:1 (2017), 24–28 | DOI | Zbl

[4] Alon N., Spencer J., The Probabilistic Method, Wiley, Hoboken, 2016 | MR | Zbl

[5] Dyer M., Frieze A., Greenhill C., “On the chromatic number of a random hypergraph”, J. Combin. Theory, Ser. B, 113 (2015), 68–122 | DOI | MR | Zbl

[6] Janson S., Łuczak T., Rucinski A., Random Graphs, Wiley, New York, 2000 | MR | Zbl

[7] Krivelevich M., Sudakov B., “The chromatic numbers of random hypergraphs”, Random Structures Algorithms, 12:4 (1998), 381–403 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] Schmidt J. P., “Probabilistic analysis of strong hypergraph coloring algorithms and the strong chromatic number”, Discrete Math., 66 (1987), 259–277 | DOI | MR | Zbl

[9] Schmidt-Pruzan J., Shamir E., Upfal E., “Random hypergraph coloring algorithms and the weak chromatic number”, J. Graph Theory, 8 (1985), 347–362 | DOI | MR

[10] Shamir E., “Chromatic numbers of random hypergraphs and associated graph”, Adv. Comput. Research, 5 (1989), 127–142