On the $s$-colorful number of a~random hypergraph
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 191-199

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of finding the $s$-colorful number of a random hypergraph in the binomial model. For different probabilities of the edge appearance, we establish asymptotic bounds for the $s$-colorful numbers, which hold with probability tending to $1$.
@article{FPM_2018_22_3_a10,
     author = {D. A. Shabanov},
     title = {On the $s$-colorful number of a~random hypergraph},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {191--199},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a10/}
}
TY  - JOUR
AU  - D. A. Shabanov
TI  - On the $s$-colorful number of a~random hypergraph
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 191
EP  - 199
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a10/
LA  - ru
ID  - FPM_2018_22_3_a10
ER  - 
%0 Journal Article
%A D. A. Shabanov
%T On the $s$-colorful number of a~random hypergraph
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 191-199
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a10/
%G ru
%F FPM_2018_22_3_a10
D. A. Shabanov. On the $s$-colorful number of a~random hypergraph. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 3, pp. 191-199. http://geodesic.mathdoc.fr/item/FPM_2018_22_3_a10/