High excursions of Gaussian nonstationary processes in discrete time
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 159-169
Voir la notice de l'article provenant de la source Math-Net.Ru
Exact asymptotic behavior is given for high excursion probabilities of Gaussian processes in discrete time as the corresponding lattice pitch unboundedly decreases. The proximity of the asymptotic behavior to that in continuous time is discussed. Examples are given related to fractional Brownian motion and the corresponding ruin problem.
@article{FPM_2018_22_2_a9,
author = {I. A. Kozik and V. I. Piterbarg},
title = {High excursions of {Gaussian} nonstationary processes in discrete time},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {159--169},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a9/}
}
TY - JOUR AU - I. A. Kozik AU - V. I. Piterbarg TI - High excursions of Gaussian nonstationary processes in discrete time JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 159 EP - 169 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a9/ LA - ru ID - FPM_2018_22_2_a9 ER -
I. A. Kozik; V. I. Piterbarg. High excursions of Gaussian nonstationary processes in discrete time. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 159-169. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a9/