High excursions of Gaussian nonstationary processes in discrete time
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 159-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact asymptotic behavior is given for high excursion probabilities of Gaussian processes in discrete time as the corresponding lattice pitch unboundedly decreases. The proximity of the asymptotic behavior to that in continuous time is discussed. Examples are given related to fractional Brownian motion and the corresponding ruin problem.
@article{FPM_2018_22_2_a9,
     author = {I. A. Kozik and V. I. Piterbarg},
     title = {High excursions of {Gaussian} nonstationary processes in discrete time},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a9/}
}
TY  - JOUR
AU  - I. A. Kozik
AU  - V. I. Piterbarg
TI  - High excursions of Gaussian nonstationary processes in discrete time
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 159
EP  - 169
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a9/
LA  - ru
ID  - FPM_2018_22_2_a9
ER  - 
%0 Journal Article
%A I. A. Kozik
%A V. I. Piterbarg
%T High excursions of Gaussian nonstationary processes in discrete time
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 159-169
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a9/
%G ru
%F FPM_2018_22_2_a9
I. A. Kozik; V. I. Piterbarg. High excursions of Gaussian nonstationary processes in discrete time. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 159-169. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a9/

[1] Piterbarg V. I., Dvadtsat lektsii o gaussovskikh protsessakh, MTsNMO, M., 2015.

[2] Piterbarg V. I., Prisyazhnyuk V. P., “Asimptotika veroyatnosti bolshogo vybrosa dlya gaussovskogo nestatsionarnogo protsessa”, Teor. ver. i matem. stat., 18 (1978), 121–133

[3] Bayer Ch., Friz P., Gatheral J., “Pricing under rough volatility”, Quantitative Finance, 16:6 (2016), 887–904 | DOI | MR

[4] Borovkov K., Mishura Y., Novikov A., Zhitlukhin M., “Bounds for expected maxima of Gaussian processes and their discrete approximations”, Stoch. Int. J. Probab. Stoch. Process., 89:1 (2017), 21–37 | DOI | MR | Zbl

[5] Hüsler J., Piterbarg V., “Extremes of a certain class of Gaussian processes”, Stoch. Proc. Their Appl., 83 (1999), 257–271 | DOI | MR | Zbl

[6] Makogin V., “Simulation paradoxes related to a fractional Brownian motion with small Hurst index”, Modern Stoch. Theory Appl., 3 (2016), 181–190 | DOI | MR | Zbl

[7] Piterbarg V. I., “Discrete and continuous time extremes of Gaussian processes”, Extremes, 7:2 (2004), 161–177 | DOI | MR | Zbl

[8] Piterbarg V. I., Asymptotic Methods in Theory of Gaussian Random Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 2012 | DOI | MR