@article{FPM_2018_22_2_a9,
author = {I. A. Kozik and V. I. Piterbarg},
title = {High excursions of {Gaussian} nonstationary processes in discrete time},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {159--169},
year = {2018},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a9/}
}
I. A. Kozik; V. I. Piterbarg. High excursions of Gaussian nonstationary processes in discrete time. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 159-169. http://geodesic.mathdoc.fr/item/FPM_2018_22_2_a9/
[1] Piterbarg V. I., Dvadtsat lektsii o gaussovskikh protsessakh, MTsNMO, M., 2015.
[2] Piterbarg V. I., Prisyazhnyuk V. P., “Asimptotika veroyatnosti bolshogo vybrosa dlya gaussovskogo nestatsionarnogo protsessa”, Teor. ver. i matem. stat., 18 (1978), 121–133
[3] Bayer Ch., Friz P., Gatheral J., “Pricing under rough volatility”, Quantitative Finance, 16:6 (2016), 887–904 | DOI | MR
[4] Borovkov K., Mishura Y., Novikov A., Zhitlukhin M., “Bounds for expected maxima of Gaussian processes and their discrete approximations”, Stoch. Int. J. Probab. Stoch. Process., 89:1 (2017), 21–37 | DOI | MR | Zbl
[5] Hüsler J., Piterbarg V., “Extremes of a certain class of Gaussian processes”, Stoch. Proc. Their Appl., 83 (1999), 257–271 | DOI | MR | Zbl
[6] Makogin V., “Simulation paradoxes related to a fractional Brownian motion with small Hurst index”, Modern Stoch. Theory Appl., 3 (2016), 181–190 | DOI | MR | Zbl
[7] Piterbarg V. I., “Discrete and continuous time extremes of Gaussian processes”, Extremes, 7:2 (2004), 161–177 | DOI | MR | Zbl
[8] Piterbarg V. I., Asymptotic Methods in Theory of Gaussian Random Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 2012 | DOI | MR