Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_1_a2, author = {A. S. Belov}, title = {On unimprovability of some theorems on convergence in mean of trigonometric series}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {31--49}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a2/} }
TY - JOUR AU - A. S. Belov TI - On unimprovability of some theorems on convergence in mean of trigonometric series JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 31 EP - 49 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a2/ LA - ru ID - FPM_2018_22_1_a2 ER -
A. S. Belov. On unimprovability of some theorems on convergence in mean of trigonometric series. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 1, pp. 31-49. http://geodesic.mathdoc.fr/item/FPM_2018_22_1_a2/
[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961
[2] Belov A. S., “Ob usloviyakh skhodimosti v srednem trigonometricheskikh ryadov Fure”, Izv. Tul. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 4:1 (1998), 40–46 | MR
[3] Belov A. S., “Ob usloviyakh skhodimosti (ogranichennosti) v srednem chastnykh summ trigonometricheskogo ryada”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sb. statei, AFTs, M., 1999, 1–17
[4] Belov A. S., “O koeffitsientnykh usloviyakh skhodimosti trigonometricheskogo ryada v srednem”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy 5-i Kazanskoi mezhdunarodnoi shkoly-konferentsii (27 iyunya–4 iyulya 2001 g.), Tr. matem. tsentra im. N. I. Lobachevskogo, 8, Izd-vo DAS, Kazan, 2001, 36–38
[5] Belov A. S., “Ob odnom uslovii skhodimosti v srednem trigonometricheskikh ryadov”, Matem. zametki, 69:3 (2001), 323–328 | DOI | MR | Zbl
[6] Belov A. S., “Zamechaniya o skhodimosti (ogranichennosti) v srednem chastnykh summ trigonometricheskogo ryada”, Matem. zametki, 71:6 (2002), 807–817 | DOI | Zbl
[7] Belov A. S., “O novykh usloviyakh skhodimosti v srednem trigonometricheskikh ryadov”, Tr. mezhdunar. shkoly-seminara po geometrii i analizu pamyati N. V. Efimova, Tezisy dokladov (Abrau-Dyurso, baza otdykha Rostovskogo gosuniv. «Limanchik», 5–11 sent. 2002 g.), Rostov-na-Donu, 2002, 103–105
[8] Belov A. S., “Ob usloviyakh skhodimosti (ogranichennosti) v srednem chastnykh summ trigonometricheskogo ryada”, Vestn. Ivanov. gosuniv. Ser. Biologiya. Khimiya. Fizika. Matematika, 2004, no. 3, 110–117
[9] Belov A. S., “Neuluchshaemost nekotorykh teorem o skhodimosti v srednem trigonometricheskikh ryadov Fure”, Materialy 9-i mezhdunar. Kazanskoi letnei nauch. shkoly-konferentsii «Teoriya funktsii, ee prilozheniya i smezhnye voprosy» (Kazan, 1–7 iyulya 2009 g.), Tr. matem. tsentra im. N. I. Lobachevskogo, 38, Kazan. matem. obsch-vo, Kazan, 2009, 40–43
[10] Zigmund A., Trigonometricheskie ryady, v. 1, 2, Mir, M., 1965 | MR
[11] Telyakovskii S. A., Fomin G. A., “O skhodimosti v metrike $L$ ryadov Fure s kvazimonotonnymi koeffitsientami”, Tr. MIAN SSSR, 134, 1975, 310–313
[12] Fomin G. A., “O skhodimosti ryadov Fure v srednem”, Matem. sb., 110:2 (1979), 251–265 | MR | Zbl
[13] Fridli S., “On the $L^1$-convergence of Fourier series”, Stud. Math., 125:2 (1997), 161–174 | DOI | MR | Zbl
[14] Garret J. W., Rees C. S., Stanojević Č. V., “On $L^1$-convergence of Fourier series with quasi-monotone coefficients”, Proc. Amer. Math. Soc., 72:3 (1978), 535–538 | MR | Zbl