Bifurcations of Steiner tree topologies in the plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 183-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bifurcation diagrams of Steiner tree topologies for four boundary points are constructed in this paper. Also some properties of such diagrams for an arbitrary number of points are considered.
@article{FPM_2016_21_6_a8,
     author = {E. I. Stepanova},
     title = {Bifurcations of {Steiner} tree topologies in the plane},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {183--204},
     year = {2016},
     volume = {21},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a8/}
}
TY  - JOUR
AU  - E. I. Stepanova
TI  - Bifurcations of Steiner tree topologies in the plane
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 183
EP  - 204
VL  - 21
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a8/
LA  - ru
ID  - FPM_2016_21_6_a8
ER  - 
%0 Journal Article
%A E. I. Stepanova
%T Bifurcations of Steiner tree topologies in the plane
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 183-204
%V 21
%N 6
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a8/
%G ru
%F FPM_2016_21_6_a8
E. I. Stepanova. Bifurcations of Steiner tree topologies in the plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 183-204. http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a8/

[1] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR

[2] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003 | MR

[3] Kurant R., Robbins G., Chto takoe matematika? Elementarnyi ocherk idei i metodov, MTsNMO, M., 2017

[4] Du D. Z., Hwang F. K., Song G. D., Ting G. Y., “Steiner minimal trees on sets of four points”, Discrete Comput. Geom., 2 (1987), 401–414 | DOI | MR | Zbl

[5] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl

[6] Hwang F. K., Richards D. S., Winter P., The Steiner Tree Problem, Ann. Discrete Math., 53, North Holland, 1992 | MR | Zbl

[7] Jarnik V., Kössler O., “O minimálních grafech, obsahujících $n$ daných bodů”, Čas. Pěst. Mat. Fys., 63 (1934), 223–235

[8] Melzak Z. A., “On the problem of Steiner”, Can. Math. Bull., 4 (1961), 143–148 | DOI | MR | Zbl

[9] Ollerenshaw K., “Minimal networks linking four points in a plane”, Inst. Math. Appl., 15 (1978), 208–211 | MR

[10] Pollak H. O., “Some remarks on the Steiner problem”, J. Combin. Theor. Ser. A, 24 (1978), 278–295 | DOI | MR | Zbl

[11] Weng J. F., “Variational approach and Steiner minimal trees on four points”, Discrete Math., 132:1–3 (1994), 349–362 | DOI | MR | Zbl