On metrics of diagonal curvature
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 171-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the theory of spaces of diagonal curvature is developed. An efficient necessary condition for metrics of diagonal curvature, namely, the vanishing of the Haantjes tensor for the Ricci affinor, is obtained. Examples are constructed.
@article{FPM_2016_21_6_a7,
     author = {O. I. Mokhov},
     title = {On metrics of diagonal curvature},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--182},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a7/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - On metrics of diagonal curvature
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 171
EP  - 182
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a7/
LA  - ru
ID  - FPM_2016_21_6_a7
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T On metrics of diagonal curvature
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 171-182
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a7/
%G ru
%F FPM_2016_21_6_a7
O. I. Mokhov. On metrics of diagonal curvature. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 171-182. http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a7/

[1] Berdinskii D. A., Rybnikov I. P., “Ob ortogonalnykh krivolineinykh sistemakh koordinat v prostranstvakh postoyannoi krivizny”, Sib. matem. zhurn., 52:3 (2011), 502–511 | MR | Zbl

[2] Glukhov E. V., Algebro-geometricheskie metody postroeniya ortogonalnykh koordinat v rimanovykh prostranstvakh, Dipl. rabota, Mosk. gos. un-t im. M. V. Lomonosova, 2015

[3] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[4] Zakharov V. E., Shabat A. B., “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | MR | Zbl

[5] Krichever I. M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego pril., 31:1 (1997), 32–50 | DOI | MR | Zbl

[6] Mironov A. E., Taimanov I. A., “Ortogonalnye krivolineinye sistemy koordinat, otvechayuschie singulyarnym spektralnym krivym”, Tr. MIAN, 255, 2006, 180–196 | Zbl

[7] Mokhov O. I., “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl

[8] Mokhov O. I., “Soglasovannye i pochti soglasovannye metriki”, UMN, 55:4 (2000), 217–218 | DOI | MR | Zbl

[9] Mokhov O. I., “Ploskie puchki metrik i integriruemye reduktsii uravnenii Lame”, UMN, 56:2 (2001), 221–222 | DOI | MR | Zbl

[10] Mokhov O. I., “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funkts. analiz i ego pril., 35:2 (2001), 24–36 | DOI | MR | Zbl

[11] Mokhov O. I., “Ob integriruemosti uravnenii dlya neosobykh par soglasovannykh ploskikh metrik”, Teor. i matem. fiz., 130:2 (2002), 233–250 | DOI | MR | Zbl

[12] Mokhov O. I., “Soglasovannye metriki postoyannoi rimanovoi krivizny: lokalnaya geometriya, nelineinye uravneniya i integriruemost”, Funkts. analiz i ego pril., 36:3 (2002), 36–47 | DOI | MR | Zbl

[13] Mokhov O. I., “Pary Laksa dlya uravnenii, opisyvayuschikh soglasovannye nelokalnye skobki Puassona gidrodinamicheskogo tipa, i integriruemye reduktsii uravnenii Lame”, Teor. i matem. fiz., 138:2 (2004), 283–296 | DOI | MR | Zbl

[14] Mokhov O. I., “Rimanovy invarianty poluprostykh nelokalno-bigamiltonovykh sistem gidrodinamicheskogo tipa i soglasovannye metriki”, UMN, 65:6 (2010), 189–190 | DOI | MR

[15] Mokhov O. I., “O soglasovannykh metrikakh i diagonalizuemosti nelokalno-bigamiltonovykh sistem gidrodinamicheskogo tipa”, Teor. i matem. fiz., 167:1 (2011), 3–22 | DOI | MR | Zbl

[16] Mokhov O. I., Ferapontov E. V., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl

[17] Ferapontov E. V., “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl

[18] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | Zbl

[19] Bianchi L., Lezioni di Geometria Differenziale, pt. 2, v. 2, Zanichelli, Bologna, 1924 | Zbl

[20] Bianchi L., Opere, v. 3, Sistemi Tripli Orthogonali, Cremonese, Roma, 1955 | MR | Zbl

[21] Cartan É., Les systèmes differentials extérieurs et leur applications géométriques, Actual. Sci. Ind., 994, Hermann et Cie., Paris, 1945 | MR

[22] Darboux G., Leçons sur les Systèmes Orthogonaux et les Coordonnées Curvilignes, Gauthier-Villars, Paris, 1910 | MR

[23] Deturck D. M., Yang D., “Existence of elastic deformations with prescribed principal strains and triply orthogonal systems”, Duke Math. J., 51:2 (1984), 243–260 | DOI | MR | Zbl

[24] Haantjes J., “On forming sets of eigenvectors”, Indag. Math., 17 (1955), 158–162 | DOI | MR

[25] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 13 (1951), 200–212 | DOI | MR | Zbl

[26] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94 (1998), 103–139 | DOI | MR | Zbl

[27] Zakharov V. E., “Application of the inverse scattering transform to classical problems of differential geometry and general relativity”, The Legacy of the Inverse Scattering Transform in Applied Mathematics, Contemp. Math., 301, eds. J. Bona, R. Choudhury, D. Kaup, Amer. Math. Soc., Providence, 2002, 15–34 | DOI | MR | Zbl