A glimpse into continuous combinatorics of posets, polytopes, and matroids
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 143-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

We advocate a systematic study of continuous analogs of finite partially ordered sets, convex polytopes, oriented matroids, arrangements of subspaces, finite simplicial complexes, and other combinatorial structures. Among the illustrative examples reviewed are an Euler formula for a class of “continuous convex polytopes” (conjectured by Kalai and Wigderson), a duality result for a class of “continuous matroids,” a calculation of the Euler characteristic of ideals in the Grassmannian poset (related to a problem of G.-C. Rota), an exposition of the “homotopy complementation formula” for topological posets and its relation to the results of S. Kallel and R. Karoui about “weighted barycenter spaces”, and a conjecture of Vassiliev about simplicial resolutions of singularities. We also include an extension of the index inequality (Sarkaria's inequality) based on interpreting diagrams of spaces as continuous posets.
@article{FPM_2016_21_6_a5,
     author = {R. T. \v{Z}ivaljevi\'c},
     title = {A glimpse into continuous combinatorics of posets, polytopes, and matroids},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {143--164},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a5/}
}
TY  - JOUR
AU  - R. T. Živaljević
TI  - A glimpse into continuous combinatorics of posets, polytopes, and matroids
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 143
EP  - 164
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a5/
LA  - ru
ID  - FPM_2016_21_6_a5
ER  - 
%0 Journal Article
%A R. T. Živaljević
%T A glimpse into continuous combinatorics of posets, polytopes, and matroids
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 143-164
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a5/
%G ru
%F FPM_2016_21_6_a5
R. T. Živaljević. A glimpse into continuous combinatorics of posets, polytopes, and matroids. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 143-164. http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a5/

[1] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Biblioteka matematika, 3, Fazis, M., 1997

[2] Knut D., Grekhem R., Patashnik O., Konkretnaya matematika. Matematicheskie osnovy informatiki, Vilyams, M., 2009

[3] Anderson L., Delucchi E., “Foundations for a theory of complex matroids”, Discrete Comput. Geom., 48 (2012), 807–846 1005.3560v2 [math.CO] | MR | Zbl

[4] Bahri A., Coron J. M., “On a non-linear elliptic equation involving the critical sobolev exponent: the effect of the topology of the domain”, Comm. Pure Appl. Math., 41 (1988), 253–294 | DOI | MR | Zbl

[5] Björner A., Walker J. W., “A homotopy complementation formula for partially ordered sets”, Europ. J. Combin., 4 (1983), 11–19 | DOI | MR

[6] Jojić D., Vrećica S., Živaljević R., “Symmetric multiple chessboard complexes and a new theorem of Tverberg type”, J. Algebraic Combin., 46:1 (2017), 15–31 . arXiv:1502.05290v2 [math.CO] | DOI | MR | Zbl

[7] Kalai G., Wigderson A., “Neighborly embedded manifolds”, Discrete Comput. Geom., 40:3 (2008), 319–324 | DOI | MR | Zbl

[8] Kallel S., Karoui R., “Symmetric joins and weighted barycenters”, Adv. Nonlinear Stud., 11 (2011), 117–143 . arXiv:math/0602283v3 [math.AT] | DOI | MR | Zbl

[9] Kozlov D., Combinatorial Algebraic Topology, Algorithms Comput. Math., 21, Springer, Berlin, 2008 | MR | Zbl

[10] Klain D. A., Rota G.-C., Introduction to Geometric Probability, Lezioni Lincee, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[11] Matoušek J., Using the Borsuk-Ulam Theorem, Lect. Topol. Methods Combin. Geom., Springer, Berlin, 2003 | MR | Zbl

[12] Rota G.-C., “Ten Mathematics Problems I will never solve”, Mitteil. Deutsch. Math.-Verein., 6:2 (1998), 45–52 | MR | Zbl

[13] Schneider R., “On steiner points of convex bodies”, Israel J. Math., 9 (1971), 241–249 | DOI | MR | Zbl

[14] Schneider R., “Boundary structure and curvature of convex bodies”, Contributions to Geometry: Proc. of the Geometry-Symposium (Singen June 28, 1979 to July 1, 1978), eds. J. Tölke, Wills J. M., Springer, Berlin, 1979, 15–59 | MR

[15] Rockafellar R. T., Convex Analysis, Princeton Univ. Press, Princeton, 1972 | MR

[16] Vassiliev V. A., “Geometric realization of the homology of classical Lie groups and complexes, S-dual to flag manifolds”, St.-Petersburg Math. J., 3:4 (1991), 108–115 | MR

[17] Vassiliev V. A., Complements of Discriminants of Smooth Maps: Topology and Applications, Transl. Math. Monographs, 98, Revised Edition, Amer. Math. Soc., Providence, 1992 | DOI | MR

[18] Vassiliev V. A., “Invariants of knots and complements of discriminats”, Developments in Mathematics, the Moscow School, eds. V. I. Arnold, M. Monastyrsky, Chapman Hall, 1993, 194–250 | MR | Zbl

[19] Vassiliev V. A., “Topological order complexes and resolutions of discriminant sets”, Publ. Inst. Math., 66(80) (1999), 165–185 | MR | Zbl

[20] Welker V., Ziegler G. M., Živaljević R. T., “Homotopy colimits—comparison lemmas for combinatorial applications”, J. Reine Angew. Math., 509 (1999), 117–149 | DOI | MR | Zbl

[21] Ziegler G. M., Lectures on Polytopes, Grad. Texts Math., 152, Springer, Berlin, 1995 | DOI | MR | Zbl

[22] Ziegler G. M., Živaljević R. T., “Homotopy types of subspace arrangements via diagrams of spaces”, Math. Ann., 295 (1993), 527–548 | DOI | MR | Zbl

[23] Živaljević R. “User's guide to equivariant methods in combinatorics. I; II”, Publ. Inst. Math. (Beograd) (N. S.), 59 (73) (1996), 114–130 ; 64 (78) (1998), 107–132 | MR | Zbl | MR | Zbl

[24] Živaljević R. T., “Combinatorics of topological posets: Homotopy complementation formulas”, Adv. Appl. Math., 21:4 (1998), 547–574 | DOI | MR | Zbl

[25] Živaljević R. T. “Combinatorics of topological posets”, Lecture on the conference “Geometric Combinatorics”, Satellite Conf. of the Internat. Congress of Mathematics (Berlin 1998, Kotor, Yugoslavia, 28.8–3.9.1998) http://poincare.matf.bg.ac.rs/konferencije/satellite/

[26] Živaljević R. T. Complex and quaternionic relatives of oriented matroids, Unpublished manuscript