Local coefficients and the Herbert formula
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 79-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a generalization and applications of the Herbert formula for double points of immersions, when the normal bundle of the immersion admits an additional structure.
@article{FPM_2016_21_6_a2,
     author = {P. M. Akhmet'ev and F. Yu. Popelenskii},
     title = {Local coefficients and the {Herbert} formula},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a2/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - F. Yu. Popelenskii
TI  - Local coefficients and the Herbert formula
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 79
EP  - 91
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a2/
LA  - ru
ID  - FPM_2016_21_6_a2
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A F. Yu. Popelenskii
%T Local coefficients and the Herbert formula
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 79-91
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a2/
%G ru
%F FPM_2016_21_6_a2
P. M. Akhmet'ev; F. Yu. Popelenskii. Local coefficients and the Herbert formula. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 6, pp. 79-91. http://geodesic.mathdoc.fr/item/FPM_2016_21_6_a2/

[1] Akhmetev P. M., Frolkina O. D., “O svoistvakh grupp skosnaschennykh kobordizmov pogruzhenii”, Fundament. i prikl. matem., 21:5 (2016), 19–46

[2] Lippner G., Syuch A., “Novoe dokazatelstvo formuly Gerberta kratnykh tochek”, Fundament. prikl. matem., 11:5 (2005), 107–116

[3] Pontryagin L. S., “Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopii”, Tr. MIAN SSSR, 45, 1955, 3–139 | MR

[4] Akhmet'ev P. M., Eccles P. J., “The relationship between framed bordism and skew-framed bordism”, Bull. London Math. Soc., 39:3 (2007), 473–481 | DOI | MR | Zbl

[5] Akhmetiev P., Frolkina O., “On non-immersibility of $\mathbb{R}\!\mathrm P^{10}$ to $\mathbb{R}^{15}$”, Topology Its Applications, 160:11 (2013), 1241–1254 | DOI | MR

[6] Eccles P. J., “Multiple points of codimension one immersions”, Topology Symposium (Siegen 1979), Lect. Notes Math., 788, Springer, Berlin, 1980, 23–38 | DOI | MR

[7] Eccles P. J., Grant M., “Bordism classes represented by multiple point manifolds of immersed manifolds”, Tr. MIAN, 252, 2006, 55–60 | MR | Zbl

[8] Grant M., Bordism of Immersions, Thesis, 2006

[9] Herbert R. J., Multiple points of immersed manifolds, Mem. Amer. Math. Soc., 250, Amer. Math. Soc., Providence, 1981 | MR | Zbl

[10] Hirsch M. W., “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1959), 242–276 | DOI | MR | Zbl

[11] Szűcs A., “Cobordism of immersions and singular maps, loop spaces and multiple points”, Geometric Algebraic Topology, 18 (1986), 239–253 | Zbl

[12] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl