@article{FPM_2016_21_5_a9,
author = {A. Yu. Savin and B. Yu. Sternin},
title = {On traces of operators associated with actions of compact {Lie} groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {199--217},
year = {2016},
volume = {21},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a9/}
}
A. Yu. Savin; B. Yu. Sternin. On traces of operators associated with actions of compact Lie groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 199-217. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a9/
[1] Loschenova D. A., “Zadachi Soboleva, assotsiirovannye s deistviyami grupp Li”, Differents. uravn., 51:8 (2015), 1056–1069 | DOI
[2] Novikov S. P., Sternin B. Yu., “Sledy ellipticheskikh operatorov na podmnogoobraziyakh i $K$-teoriya”, DAN SSSR, 170:6 (1966), 1265–1268 | Zbl
[3] Novikov S. P., Sternin B. Yu., “Ellipticheskie operatory i podmnogoobraziya”, DAN SSSR, 171:3 (1966), 525–528 | Zbl
[4] Savin A. Yu., Sternin B. Yu., “Nelokalnye ellipticheskie operatory dlya kompaktnykh grupp Li”, Dokl. RAN, 431:4 (2010), 457–460 | Zbl
[5] Savin A. Yu., Sternin B. Yu., “O nelokalnykh zadachakh Soboleva”, Dokl. RAN, 451:3 (2013), 259–263 | DOI | Zbl
[6] Savin A. Yu., Sternin B. Yu., “Ellipticheskie translyatory na mnogoobraziyakh s mnogomernymi osobennostyami”, Differents. uravn., 49:4 (2013), 513–527 | Zbl
[7] Sternin B. Yu., “Ellipticheskie i parabolicheskie zadachi na mnogoobraziyakh s granitsei, sostoyaschei iz komponent razlichnoi razmernosti”, Tr. MMO, 15, 1966, 346–382 | Zbl
[8] Khalmosh P., Sander V., Ogranichennye integralnye operatory v prostranstvakh $L^2$, Nauka, M., 1985 | MR
[9] Nazaikinskii V., Savin A., Schulze B.-W., Sternin B., Elliptic Theory on Singular Manifolds, CRC Press, Boca Raton, 2005 | MR
[10] Savin A. Yu., “On the index of nonlocal elliptic operators for compact Lie groups”, Central Eur. J. Math., 9:4 (2011), 833–850 | DOI | MR | Zbl
[11] Sternin B. Yu., “On a class of nonlocal elliptic operators for compact Lie groups. Uniformization and finiteness theorem”, Central Eur. J. Math., 9:4 (2011), 814–832 | DOI | MR | Zbl