Analytic deformations of minimal networks
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 159-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of extreme networks under deformations of their boundary sets is investigated. It is shown that analyticity of a deformation of the boundary set guarantees preservation of the network type for minimal spanning trees, minimal fillings, and so-called stable shortest trees in the Euclidean space.
@article{FPM_2016_21_5_a6,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Analytic deformations of minimal networks},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--180},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a6/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Analytic deformations of minimal networks
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 159
EP  - 180
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a6/
LA  - ru
ID  - FPM_2016_21_5_a6
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Analytic deformations of minimal networks
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 159-180
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a6/
%G ru
%F FPM_2016_21_5_a6
A. O. Ivanov; A. A. Tuzhilin. Analytic deformations of minimal networks. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 159-180. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a6/

[1] Eremin A. Yu., “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Matem. sb., 204:9 (2013), 51–72 | DOI | MR | Zbl

[2] Ivanov A. O., Ovsyannikov Z. N., Strelkova N. P., Tuzhilin A. A., “Odnomernye minimalnye zapolneniya s rebrami otritsatelnogo vesa”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 5, 3–8

[3] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, UMN, 47:2 (1992), 53–115 | MR | Zbl

[4] Ivanov A. O., Tuzhilin A. A., “Differentsialnoe ischislenie na prostranstve minimalnykh derevev Shteinera v rimanovykh mnogoobraziyakh”, Matem. sb., 192:6 (2001), 31–50 | DOI | Zbl

[5] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl

[6] Gromov M., “Filling Riemannian manifolds”, J. Diff. Geom., 18:1 (1983), 147 | MR | Zbl

[7] Hörmander L., An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966 | MR | Zbl

[8] Ivanov A. O., Tuzhilin A. A., “The Steiner problem for convex boundaries, general case”, Minimal Surfaces, Adv. Sov. Math., 15, ed. A. Fomenko, Amer. Math. Soc., Providence, 1993, 15–92 | MR | Zbl

[9] Ivanov A. O., Tuzhilin A. A., Minimal Networks: The Steiner Problem and Its Generalizations, CRC Press, Boca Raton, 1994 | MR | Zbl

[10] Melzak Z. A., “On the problem of Steiner”, Can. Math. Bull., 4 (1960), 143–148 | DOI | MR

[11] Pollak H. O., “Some remarks on the Steiner problem”, J. Combin. Theor. Ser. A, 24 (1978), 278–295 | DOI | MR | Zbl

[12] Rubinstein J. H., Thomas D. A., “A variational approach to the Steiner network problem”, Ann. Operations Research, 33 (1991), 481–499 | DOI | MR | Zbl

[13] Thomas D. A., “A variational approach to the Steiner ratio conjecture for six points”, Topological Network Design: Analysis and Synthesis, Proc. of the NATO Advanced Research Workshop, Copenhagen, 1989

[14] Weng J. F., “Variational approach and Steiner minimal trees on four points”, Discrete Math., 132:1–3 (1994), 349–362 | DOI | MR | Zbl