Pullback attractors for a~model of polymer solutions motion with rheological relation satisfying the objectivity principle
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 129-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the base of the trajectory pullback attractors theory, this paper studies the dynamics of weak solutions for a nonautonomous model of the polymer solutions motion (with the rheological relation satisfying the objectivity principle). For this model, we establish the existence of weak solutions, determine a family of trajectory spaces, introduce the concepts of trajectory and minimal pullback attractors, and prove the existence of these attractors.
@article{FPM_2016_21_5_a5,
     author = {V. G. Zvyagin and A. V. Zvyagin},
     title = {Pullback attractors for a~model of polymer solutions motion with rheological relation satisfying the objectivity principle},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {129--157},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a5/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - A. V. Zvyagin
TI  - Pullback attractors for a~model of polymer solutions motion with rheological relation satisfying the objectivity principle
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 129
EP  - 157
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a5/
LA  - ru
ID  - FPM_2016_21_5_a5
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A A. V. Zvyagin
%T Pullback attractors for a~model of polymer solutions motion with rheological relation satisfying the objectivity principle
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 129-157
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a5/
%G ru
%F FPM_2016_21_5_a5
V. G. Zvyagin; A. V. Zvyagin. Pullback attractors for a~model of polymer solutions motion with rheological relation satisfying the objectivity principle. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 129-157. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a5/

[1] Amfilokhiev V. B., Voitkunskii Ya. I., Mazaeva N. P., Khodorkovskii Ya. S., “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Tr. Leningrad. korablestr. in-ta, 96 (1975), 3–9

[2] Zvyagin V. G., “Approksimatsionno-topologicheskii podkhod k issledovaniyu matematicheskikh zadach gidrodinamiki”, Sovrem. matem. Fundam. napravleniya, 46 (2012), 92–119

[3] Zvyagin A. V., “Attraktory dlya modeli dvizheniya polimerov s ob'ektivnoi proizvodnoi v reologicheskom sootnoshenii”, Dokl. RAN, 453:6 (2013), 599–602 | DOI | Zbl

[4] Zvyagin A. V., “Zadacha optimalnogo upravleniya s obratnoi svyazyu dlya matematicheskoi modeli dvizheniya slabo kontsentrirovannykh vodnykh polimernykh rastvorov s ob'ektivnoi proizvodnoi”, Sib. matem. zhurn., 54:4 (2013), 807–825 | MR | Zbl

[5] Zvyagin V. G., Kondratev S. K., “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Matem. sb., 203:11 (2012), 83–104 | DOI | MR | Zbl

[6] Zvyagin V. G., Kondratev S. K., “O pullback-attraktorakh modeli dvizheniya slabokontsentrirovannykh vodnykh rastvorov polimerov”, Dokl. RAN, 459:1 (2014), 10–13 | DOI | MR | Zbl

[7] Zvyagin V. G., Kondratev S. K., “Pullback-attraktory modeli dvizheniya slabo kontsentrirovannykh vodnykh rastvorov polimerov”, Izv. RAN. Ser. matem., 79:11 (2015), 3–26 | DOI | Zbl

[8] Zvyagin V. G., Turbin M. V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND, M., 2012

[9] Pavlovskii V. A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, DAN SSSR, 200:4 (1971), 809–812

[10] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981

[11] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[12] Chepyzhov V. V., Vishik M. I., Attractors for Equations of Mathematical Physics, AMS Colloq. Publ., Amer. Math. Soc., Providence, 2002 | MR | Zbl

[13] Sell G. R., You Y., Dynamics of Evolutionary Equations, Appl. Math. Sci., 143, Springer, New York, 2002 | DOI | MR | Zbl

[14] Simon J., “Compact sets in the space $L^p(0,T; B)$”, Ann. Mat. Pura Appl., 146 (1987), 65–96 | DOI | MR | Zbl

[15] Vorotnikov D. A., “Asymptotic behavior of the non-autonomous 3D Navier–Stokes problem with coercive force”, J. Differ. Equ., 251 (2011), 2209–2225 | DOI | MR | Zbl

[16] Vorotnikov D. A., Zvyagin V. G., “Trajectory and global attractors of the boundary-value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10:1 (2008), 19–44 | DOI | MR | Zbl

[17] Zvyagin A. V., “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Anal., Theory Methods Appl., 90 (2013), 70–85 | DOI | MR | Zbl

[18] Zvyagin V. G., Kondratyev S. K., “Approximating topological approach to the existence of attractors in fluid mechanics”, J. Fixed Point Theory Appl., 13:2 (2013), 359–395 | DOI | MR | Zbl

[19] Zvyagin V., Kondratyev S., “Pullback attractors of the Jeffreys–Oldroyd equations”, J. Differ. Equ., 260:6 (2016), 5026–5042 | DOI | MR | Zbl

[20] Zvyagin V. G., Turbin M. V., “The study of initial boundary-value problems for mathematical models of the motion of Kelvin–Voigt fluids”, J. Math. Sci., 168:2 (2010), 157–308 | DOI | MR | Zbl

[21] Zvyagin V. G., Vorotnikov D. A., Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, Walter de Gruyter, Berlin, 2008 | MR