Nonlinear nonlocal substitutions in functional integrals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 47-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that nonlinear nonlocal substitutions in functional integrals lead to the need of integration over functional spaces that include functions with singularities. This makes it possible to formulate a quantum theory in cases where singularities are essential, e.g., in quantum cosmology. The proper accounting of singularities in functional integrals gives an additional unexpected effect, which we call “quantum restoration of broken symmetry.”
@article{FPM_2016_21_5_a2,
     author = {V. V. Belokurov and E. T. Shavgulidze},
     title = {Nonlinear nonlocal substitutions in functional integrals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {47--59},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a2/}
}
TY  - JOUR
AU  - V. V. Belokurov
AU  - E. T. Shavgulidze
TI  - Nonlinear nonlocal substitutions in functional integrals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 47
EP  - 59
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a2/
LA  - ru
ID  - FPM_2016_21_5_a2
ER  - 
%0 Journal Article
%A V. V. Belokurov
%A E. T. Shavgulidze
%T Nonlinear nonlocal substitutions in functional integrals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 47-59
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a2/
%G ru
%F FPM_2016_21_5_a2
V. V. Belokurov; E. T. Shavgulidze. Nonlinear nonlocal substitutions in functional integrals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 47-59. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a2/

[1] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Metod priblizhennogo vychisleniya kontinualnykh integralov, ispolzuyuschii teoriyu vozmuschenii so skhodyaschimisya ryadami. I”, TMF, 109:1 (1996), 51–59 | DOI | MR | Zbl

[2] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Metod priblizhennogo vychisleniya kontinualnykh integralov, ispolzuyuschii teoriyu vozmuschenii so skhodyaschimisya ryadami. II. Evklidova kvantovaya teoriya polya”, TMF, 109:1 (1996), 60–69 | DOI | MR | Zbl

[3] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Teoriya vozmuschenii so skhodyaschimisya ryadami dlya funktsionalnykh integralov po feinmanovskoi mere”, UMN, 52:2 (1997), 153–154 | DOI | MR

[4] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Vychislenie funktsionalnykh integralov s pomoschyu skhodyaschikhsya ryadov”, Fundament. i prikl. matem., 3:3 (1997), 693–713 | MR | Zbl

[5] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Obschii podkhod k vychisleniyu funktsionalnykh integralov i summirovaniyu raskhodyaschikhsya ryadov”, Fundament. i prikl. matem., 5:2 (1999), 363–383 | MR | Zbl

[6] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Ob odnom metode summirovaniya rasskhodyaschikhsya ryadov”, UMN, 54:3 (1999), 153–154 | DOI | MR

[7] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Metod summirovaniya raskhodyaschikhsya ryadov s lyuboi tochnostyu”, Matem. zametki, 68:1 (2000), 24–35 | DOI | MR | Zbl

[8] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Teoriya vozmuschenii so skhodyaschimisya ryadami dlya vychisleniya velichin, zadannykh konechnym chislom chlenov raskhodyaschegosya ryada traditsionnoi teorii vozmuschenii”, TMF, 123:3 (2000), 452–461 | DOI | MR | Zbl

[9] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Suschestvovanie funktsionalnykh integralov v kvantovopolevoi modeli na prostranstve petel”, UMN, 59:5 (2004), 163–164 | DOI | MR | Zbl

[10] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., “Asimptoticheskie svoistva funktsionalnykh integralov v kvantovopolevoi modeli na prostranstve petel”, Dokl. RAN, 401:6 (2005), 749–751 | MR | Zbl

[11] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., Yudin I. L., “Primery raschetov v novoi teorii vozmuschenii so skhodyaschimisya ryadami”, Vestn. Mosk. un-ta. Ser. 3. Fizika, astronomiya, 2001, no. 2, 23–27 | Zbl

[12] Belokurov V. V., Solovev Yu. P., Shavgulidze E. T., Yudin I. L., “Vychislenie beta-funktsii v modeli fi-chetyre v shirokom intervale znachenii konstanty svyazi”, Vestn. Mosk. un-ta. Ser. 3. Fizika, astronomiya, 2001, no. 1, 3–6 | MR

[13] Belokurov V. V., Kamchatny V. V., Shavgulidze E. T., Solovyov Y. P., “Perturbation theory with convergent series for arbitrary values of coupling constant”, Mod. Phys. Lett. A, 12:10 (1997), 661–672 | DOI

[14] Belokurov V. V., Shavgulidze E. T., Paths with singularities in functional integrals of quantum field theory, arXiv: 1112.3899v2 [hep-th] | MR

[15] Belokurov V. V., Shavgulidze E. T., Quantum restoration of broken symmetries, arXiv: 1303.3523 [math-ph]

[16] Belokurov V. V., Shavgulidze E. T., A class of exactly solvable quantum models of scalar gravity, arXiv: 1303.5027 [hep-th]

[17] Belokurov V. V., Shavgulidze E. T., Solovyov Y. P., “New perturbation theory for quantum field theory: convergent series instead of asymptotic expansions”, Mod. Phys. Lett. A, 10:39 (1995), 3033–3041 | DOI

[18] Belokurov V. V., Shavgulidze E. T., Solovyov Y. P., “New Perturbation Theory for Quantum Field Theory: Convergent Series Instead of Asymptotic Expansions”, Acta Appl. Math., 68:1/3 (2001), 71–104 | DOI | MR | Zbl

[19] Belokurov V. V., Shavgulidze E. T., Solovyov Y. P., Yudin I. L., “New perturbation theory with convergent series: calculations with arbitrary values of coupling constants”, Physics of Elementary Particles and Atomic Nucleus, 31:7a (2000), 192–199