On properties of skew-framed immersions cobordism groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 19-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce geometric technique of working with skew-framed manifolds. It allows us to study stable homotopy groups of some Thom spaces by geometric means. We schematically describe how our results (which are also of independent interest) can be applied to obtain a proof of the Baum–Browder theorem stating nonimmersibility of $\mathbb R\mathrm P^{10}$ to $\mathbb R^{15}$.
@article{FPM_2016_21_5_a1,
     author = {P. M. Akhmet'ev and O. D. Frolkina},
     title = {On properties of skew-framed immersions cobordism groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {19--46},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - O. D. Frolkina
TI  - On properties of skew-framed immersions cobordism groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 19
EP  - 46
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a1/
LA  - ru
ID  - FPM_2016_21_5_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A O. D. Frolkina
%T On properties of skew-framed immersions cobordism groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 19-46
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a1/
%G ru
%F FPM_2016_21_5_a1
P. M. Akhmet'ev; O. D. Frolkina. On properties of skew-framed immersions cobordism groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 19-46. http://geodesic.mathdoc.fr/item/FPM_2016_21_5_a1/

[1] Akhmetev P. M., Solovev Yu. P., Pogruzhennye poverkhnosti: Spetskurs. Vesna 2002, http://www.mccme.ru/ium/s02/imm.html

[2] Giiu L., Maren A., “Obobschenie teoremy Rokhlina o signature”, V poiskakh utrachennoi topologii, eds. L. Giiu, A. Maren, Mir, M., 1989, 110–133

[3] Matsumoto Yu., “Elementarnoe dokazatelstvo teoremy Rokhlina o signature i ee obobscheniya, prinadlezhaschego Giiu i Marenu”, V poiskakh utrachennoi topologii, eds. L. Giiu, A. Maren, Mir, M., 1989, 134–148

[4] Pontryagin L. S., “Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopii”, Tr. MIAN SSSR, 45, 1955, 3–139 | MR

[5] Rokhlin V. A., “Trekhmernoe mnogoobrazie granitsa chetyrekhmernogo”, DAN SSSR, 81:3 (1951), 355–357 | Zbl

[6] Tom R., “Nekotorye svoistva «v tselom» differentsiruemykh mnogoobrazii”, Rassloennye prostranstva i ikh prilozheniya, Izd. inostr. lit., M., 1958, 291–351

[7] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979

[8] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[9] Akhmet'ev P. M., Eccles P. J., “The relationship between framed bordism and skew-framed bordism”, Bull. London Math. Soc., 39:3 (2007), 473–481 | DOI | MR | Zbl

[10] Akhmetiev P., Frolkina O., “On non-immersibility of $\mathbb{RP}^{10}$ to $\mathbb{R}^{15}$”, Topol. Its Appl., 160:11 (2013), 1241–1254 | DOI | MR

[11] Baum P. F., Browder W., “The cohomology of quotients of classical groups”, Topology, 3 (1965), 305–336 | DOI | MR | Zbl

[12] Boardman J. M., Steer B., “On Hopf invariants”, Comment. Math. Helv., 42:1 (1967), 180–221 | DOI | MR | Zbl

[13] Brown E. H., Jr., “Generalizations of the Kervaire invariant”, Ann. Math. (2), 95:2 (1972), 368–383 | DOI | MR | Zbl

[14] Eccles P. J., “Multiple points of codimension one immersions”, Topology Symposium (Siegen 1979), Lect. Notes Math., 788, Springer, Berlin, 1980, 23–38 | DOI | MR

[15] Freedman M., “Quadruple points of $3$-manifolds in $\mathrm{S}^4$”, Comment. Math. Helv., 53 (1978), 385–394 | DOI | MR | Zbl

[16] Grant M., Bordism of Immersions, Thesis, 2006

[17] Guillemin V., Pollack A., Differential Topology, AMS Chelsea Publ., Providence, 2010 | MR | Zbl

[18] Hass J., Hughes J., “Immersions of surfaces in $3$-manifolds”, Topology, 24 (1985), 97–112 | DOI | MR | Zbl

[19] Hirsch M. W., “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1959), 242–276 | DOI | MR | Zbl

[20] James I. M., “Cross-sections of Stiefel manifolds”, Proc. London Math. Soc. (3), 8 (1958), 536–547 | DOI | MR | Zbl

[21] Koschorke U., Vector Fields and Other Vector Bundle Morphisms. A Singularity Approach, Lect. Notes Math., 847, Springer, Berlin, 1981 | DOI | MR | Zbl

[22] Koschorke U., Sanderson B., “Self-intersections and higher Hopf invariants”, Topology, 17 (1978), 283–290 | DOI | MR | Zbl

[23] Liulevicius A., “A theorem in homological algebra and stable homotopy of projective spaces”, Trans. Amer. Math. Soc., 109 (1963), 540–552 | DOI | MR | Zbl

[24] Mahowald M., “A short proof of the James periodicity of $ \pi _{k+p} (V_{k+m,m})$”, Proc. Amer. Math. Soc., 16 (1965), 512 | MR | Zbl

[25] Pinkall U., “Regular homotopy classes of immersed surfaces”, Topology, 24:4 (1985), 421–434 | DOI | MR | Zbl

[26] Szücs A., “Cobordism of immersions and singular maps, loop spaces and multiple points”, Geometric and Algebraic Topology, Banach Center Publ., 18, PWN, Warsaw, 1986, 239–253 | DOI | MR

[27] Uchida F., “Cobordism groups of immersions”, Osaka J. Math., 8 (1971), 207–218 | MR | Zbl

[28] Vogel P., “Cobordisme d'immersions”, Ann. Sci. École Norm. Sup. 4 sér., 7 (1974), 317–358 | MR

[29] Watabe T., “$\mathrm{SO}(r)$-cobordism and embedding of $4$-manifolds”, Osaka J. Math., 4 (1967), 133–140 | MR | Zbl

[30] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl