On Haver's theorem in the category of filtered metric spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 121-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend Haver's theorem on the characterization of absolute extensors in the class of countable-dimensional spaces to the category of metric filtered spaces.
@article{FPM_2016_21_3_a6,
     author = {I. A. Zhigulich},
     title = {On {Haver's} theorem in the category of filtered metric spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--129},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a6/}
}
TY  - JOUR
AU  - I. A. Zhigulich
TI  - On Haver's theorem in the category of filtered metric spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 121
EP  - 129
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a6/
LA  - ru
ID  - FPM_2016_21_3_a6
ER  - 
%0 Journal Article
%A I. A. Zhigulich
%T On Haver's theorem in the category of filtered metric spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 121-129
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a6/
%G ru
%F FPM_2016_21_3_a6
I. A. Zhigulich. On Haver's theorem in the category of filtered metric spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 121-129. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a6/

[1] Ageev S. M., Zhigulich I. A., Silaeva Z. N., “In'ektivnye ob'ekty kategorii stratifitsirovannykh prostranstv”, Izv. vyssh. uchebn. zaved. Matematika, 2017, no. 2, 3–13 | Zbl

[2] Ageev S. M., Repovsh D., “Metod approksimativnogo prodolzheniya otobrazhenii v teorii ekstenzorov”, Sib. matem. zhurn., 43:4 (2002), 739–756 | MR

[3] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1975 | MR

[4] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR

[5] Silaeva Z. N., “Teorema Kuratovskogo–Dugundzhi dlya prostranstv s filtratsiyami”, Vestn. Belorus. un-ta. Ser. 1. Fizika. Matematika. Informatika, 2009, no. 3, 89–94 | MR | Zbl

[6] Haver W. E., “Locally contractible spaces that are absolute neighborhood retracts”, Proc. Amer. Math. Soc., 40 (1973), 280–284 | DOI | MR | Zbl

[7] Hu S.-T., Theory of Retracts, Wayne State Univ. Press, 1965 | MR | Zbl

[8] Van Mill J., The Infinite-Dimensional Topology of Function Spaces, North-Holland Math. Library, 64, North-Holland, 2001 | MR | Zbl