On $k$-transitivity conditions of a product of regular permutation groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 217-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper analyses the product of $m$ regular permutation groups ${G_1}\cdot\ldots\cdot{G_{m}}$, where $m \geq 2 $ is natural number. Each of regular permutation groups is the subgroup of symmetric permutation group $S(\Omega)$ of degree $|\Omega|$ for the set $\Omega$. M. M. Glukhov proved that for $k=2$ and $m=2$, $2$-transitivity of the product ${G_1}\cdot{G_{2}}$ is equivalent to the absence of zeros in the corresponding square matrix with number of rows and columns equal to $|\Omega|-1$. Also by M. M. Glukhov necessary conditions of $2$-transitivity of such product of regular permutation groups are given. In this paper, we consider the general case for any natural $m$ and $k$ such that $m \geq 2 $ and $k \geq 2 $. It is proved that $k$-transitivity of product of regular permutation groups ${G_1}\cdot\ldots\cdot{G_{m}}$ is equivalent to the absence of zeros in the square matrix with number of rows and columns equal to $(|\Omega | - 1)!/(|\Omega | - k)!$. We obtain correlation between the number of arcs corresponding to this matrix and a natural number $ l $ such that the product $(PsQt)^{l}$ is $2$-transitive, where $P,Q \subseteq S(\Omega )$ are some regular permutation groups and permutation $st$ is $(|\Omega | - 1)$-loop. We provide an example of the building of AES ciphers such that their round transformation are $ k $-transitive on a number of rounds.
@article{FPM_2016_21_3_a12,
     author = {A. V. Toktarev},
     title = {On $k$-transitivity conditions of a product of regular permutation groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {217--231},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a12/}
}
TY  - JOUR
AU  - A. V. Toktarev
TI  - On $k$-transitivity conditions of a product of regular permutation groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 217
EP  - 231
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a12/
LA  - ru
ID  - FPM_2016_21_3_a12
ER  - 
%0 Journal Article
%A A. V. Toktarev
%T On $k$-transitivity conditions of a product of regular permutation groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 217-231
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a12/
%G ru
%F FPM_2016_21_3_a12
A. V. Toktarev. On $k$-transitivity conditions of a product of regular permutation groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 3, pp. 217-231. http://geodesic.mathdoc.fr/item/FPM_2016_21_3_a12/

[1] Glukhov M. M., “O $2$-tranzitivnykh proizvedeniyakh regulyarnykh grupp podstanovok”, Tr. po diskr. matem., 3 (2000), 37–52

[2] Levingston R., Taylor D. E., “The theorem of Marggraff on primitive permutation groups which contain a cycle”, Bull. Austral. Math. Soc., 15:1 (1976), 125–128 | DOI | MR | Zbl