Numerical characteristics of varieties of Poisson algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 217-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is a survey of recent results of investigations on varieties of Poisson algebras. We give constructions of varieties of Poisson algebras with extremal properties, we give equivalent conditions for the polynomial codimension growth of a variety of Poisson algebras, we study varieties of Poisson algebras whose ideals of identities contain the identity $\{x,y\}\cdot \{z,t\}=0$, and we study an interrelation between such varieties and varieties of Lie algebras.
@article{FPM_2016_21_2_a9,
     author = {S. M. Ratseev},
     title = {Numerical characteristics of varieties of {Poisson} algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {217--242},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a9/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - Numerical characteristics of varieties of Poisson algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 217
EP  - 242
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a9/
LA  - ru
ID  - FPM_2016_21_2_a9
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T Numerical characteristics of varieties of Poisson algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 217-242
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a9/
%G ru
%F FPM_2016_21_2_a9
S. M. Ratseev. Numerical characteristics of varieties of Poisson algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 217-242. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a9/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR

[2] Verevkin A. B., Zaitsev M. V., Mischenko S. P., “Dostatochnoe uslovie sovpadeniya nizhnei i verkhnei eksponent mnogoobraziya lineinykh algebr”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2011, no. 2, 36–39 | MR | Zbl

[3] Volichenko I. B., “Ob odnom mnogoobrazii algebr Li, svyazannom so standartnymi tozhdestvami”, Vestsi AN BSSR: Ser. fiz. matem. nauk, 1980, no. 1, 23–30 | MR | Zbl

[4] Volichenko I. B., “Ob odnom mnogoobrazii algebr Li, svyazannom so standartnymi tozhdestvami”, Vestsi AN BSSR: Ser. fiz. matem. nauk, 1980, no. 2, 22–29 | MR

[5] Volichenko I. B., “Mnogoobrazie algebr Li s tozhdestvom $\bigl[[X_1,X_2,X_3],[X_4,X_5,X_6]\bigr]$ = $0$ nad polem kharakteristiki nul”, Sib. matem. zhurn., 25:3 (1984), 40–54 | MR | Zbl

[6] Drenski V. S., “Predstavleniya simmetricheskoi gruppy i mnogoobraziya lineinykh algebr”, Matem. sb., 115:1(5) (1981), 98–115 | MR | Zbl

[7] Kemer A. R., “Shpekhtovost T-idealov so stepennym rostom korazmernostei”, Sib. matem. zhurn., 19:1 (1978), 54–69 | MR | Zbl

[8] Mischenko S. P., “Mnogoobraziya algebr Li s dvustupenno nilpotentnym kommutantom”, Vestsi AN BSSR: Ser. fiz. matem. nauk, 1987, no. 6, 39–43

[9] Mischenko S. P., “O mnogoobraziyakh razreshimykh algebr Li”, DAN SSSR, 313:6 (1990), 1345–1348

[10] Petrogradskii V. M., “Rost polinilpotentnykh mnogoobrazii algebr Li i bystro rastuschie tselye funktsii”, Matem. sb., 188:6 (1997), 119–138 | DOI | MR | Zbl

[11] Petrogradskii V. M., “O chislennykh kharakteristikakh podmnogoobrazii trekh mnogoobrazii algebr Li”, Matem. sb., 190:6 (1999), 111–126 | DOI | MR | Zbl

[12] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR

[13] Ratseev S. M., “Rost i kodlina prostranstv spetsialnogo vida mnogoobrazii algebr Puassona”, Izv. vyssh. uchebn. zaved. Povolzh. reg., 26:5 (2006), 125–135

[14] Ratseev S. M., “Rost nekotorykh mnogoobrazii algebr Leibnitsa”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 46:6/1 (2006), 70–77 | MR | Zbl

[15] Ratseev S. M., “Otsenki rosta mnogoobrazii algebr Leibnitsa s nilpotentnym kommutantom”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 78:4 (2010), 65–72

[16] Ratseev S. M., “Rost v algebrakh Puassona”, Algebra i logika, 50:1 (2011), 68–88 | MR | Zbl

[17] Ratseev S. M., “Tozhdestva v mnogoobraziyakh, porozhdennykh algebrami verkhnetreugolnykh matrits”, Sib. matem. zhurn., 52:2 (2011), 416–429 | MR | Zbl

[18] Ratseev S. M., “Ekvivalentnye usloviya polinomialnosti rosta mnogoobrazii algebr Puassona”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 67:5 (2012), 8–13 | MR | Zbl

[19] Ratseev S. M., “Algebry Puassona polinomialnogo rosta”, Sib. matem. zhurn., 54:3 (2013), 700–711 | MR | Zbl

[20] Ratseev S. M., “O nekotorykh algebrakh Puassona s ekstremalnymi svoistvami”, Nauch. vedomosti BelGU. Matematika. Fizika, 2013, no. 5, 107–110

[21] Ratseev S. M., “Vzaimosvyaz algebr Puassona i algebr Li na yazyke tozhdestv”, Matem. zametki, 96:4 (2014), 567–577 | DOI | MR | Zbl

[22] Ratseev S. M., “O minimalnykh algebrakh Puassona”, Izv. vyssh. uchebn. zaved. Matematika, 2015, no. 11, 64–72 | MR | Zbl

[23] Ratseev S. M., “Ob algebrakh Li s ekstremalnymi svoistvami”, Sib. matem. zhurn., 56:2 (2015), 444–454 | MR | Zbl

[24] Ratseev S. M., “O sobstvennykh T-idealakh algebr Puassona s ekstremalnymi svoistvami”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2016, no. 6, 8–16 | MR | Zbl

[25] Ratseev S. M., Cherevatenko O. I., “Eksponenty nekotorykh mnogoobrazii algebr Leibnitsa–Puassona”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 104:3 (2013), 42–52 | MR | Zbl

[26] Cherevatenko O. I., “O lievo nilpotentnykh algebrakh Puassona”, Nauch. vedomosti BelGU. Ser.: Matematika, Fizika, 142:23 (2012), 14–16

[27] Shestakov I. P., “Kvantovaniya superalgebr Puassona i spetsialnost iordanovykh superalgebr Puassona”, Algebra i logika, 32:5 (1993), 572–585

[28] Drensky V., “Relations for the cocharacter sequences of T-ideals”, Proc. Int. Conf. on Algebra Honoring A. Malcev, Contemp. Math., 131, no. 2, Amer. Math. Soc., Providence, 1992, 285–300 | DOI | MR

[29] Drensky V., Free Algebras and PI-Algebras. Graduate Course in Algebra, Springer, Singapore, 2000 | MR | Zbl

[30] Drensky V., Regev A., “Exact asymptotic behaviour of the codimensions of some P. I. algebras”, Israel J. Math., 96 (1996), 231–242 | DOI | MR | Zbl

[31] Farkas D. R., “Poisson polynomial identities”, Commun. Algebra, 26:2 (1998), 401–416 | DOI | MR | Zbl

[32] Farkas D. R., “Poisson polynomial identities. II”, Arch. Math. (Basel), 72:4 (1999), 252–260 | DOI | MR | Zbl

[33] Giambruno A., La Mattina D., Petrogradsky V. M., “Matrix algebras of polynomial codimension growth”, Israel J. Math., 158 (2007), 367–378 | DOI | MR | Zbl

[34] Giambruno A., Zaicev M. V., “Exponential codimension growth of P.I. algebras: an exact estimate”, Adv. Math., 142 (1999), 221–243 | DOI | MR | Zbl

[35] Giambruno A., Zaicev M. V., Polynomial Identities and Asymptotic Methods, Math. Surveys Monographs, 122, Amer. Math. Soc., Providence, 2005 | DOI | MR | Zbl

[36] La Mattina D., “Varieties of almost polynomial growth: classifying their subvarieties”, Manuscripta Math., 123:2 (2007), 185–203 | DOI | MR | Zbl

[37] Mishchenko S. P., Petrogradsky V. M., Regev A., “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR | Zbl

[38] Mishchenko S. P., Zaicev M. V., “An example of a variety of Lie algebras with a fractional exponent”, J. Math. Sci., 93:6 (1999), 977–982 | DOI | MR | Zbl

[39] Petrogradsky V. M., “Exponents of subvarieties of upper triangular matrices over arbitrary fields are integral”, Serdica Math. J., 26:2 (2000), 167–176 | MR | Zbl

[40] Regev A., “Existence of polynomial identities in $A\otimes B$”, Bull. Amer. Math. Soc., 77:6 (1971), 1067–1069 | DOI | MR | Zbl