Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_2_a8, author = {A. R. Mayorova}, title = {Uniqueness of addition in {Lie} algebras of {Chevalley} type over rings with $1/2$ and $1/3$}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {193--216}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a8/} }
TY - JOUR AU - A. R. Mayorova TI - Uniqueness of addition in Lie algebras of Chevalley type over rings with $1/2$ and $1/3$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 193 EP - 216 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a8/ LA - ru ID - FPM_2016_21_2_a8 ER -
A. R. Mayorova. Uniqueness of addition in Lie algebras of Chevalley type over rings with $1/2$ and $1/3$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 193-216. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a8/
[1] Arzhantsev I. V., “Odnoznachnost slozheniya v poluprostykh algebrakh Li”, UMN, 56:3 (2001), 155–156 | DOI | MR | Zbl
[2] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR
[3] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:2 (1988), 210–224 | Zbl
[4] Ponomarev K. N., “Ob opredelimosti slozheniya v algebrakh Li”, Sib. matem. zhurn., 52:6 (2011), 1341–1345 | MR | Zbl
[5] Khamfris Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, Izd-vo MTsNMO, M., 2003
[6] Arzhantsev I. V., “Uniqueness of addition in Lie algebra $\mathrm{sl}(2)$”, Lie Algebras, Rings and Related Topics, Springer, Berlin, 2000, 1–4 | MR | Zbl
[7] Arzhantsev I. V., “Some results on uniqueness of addition in Lie algebras”, Proc. of the First Colloquium on Lie Theory and Applications (Univ. de Vigo, 2002), 19–24 | MR | Zbl
[8] Stephenson W., “Unique addition rings”, Can. J. Math., 21:6 (1969), 1455–1461 | DOI | MR | Zbl