Rolling simplexes and their commensurability.~IV. (A~farewell to arms!)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 145-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

The text by pure algebraic reasons outlines why the spectrum of maximal ideals $\mathrm{Spec}_\mathbb{C} A$ of a countable-dimensional differential $\mathbb{C}$-algebra $A$ of transcendence degree $1$ without zero divisors is locally analytic, which means that for any $\mathbb{C}$-homomorphism $\psi_M \colon A \to \mathbb{C}$ ($M \in \mathrm{Spec}_{\mathbb C} A$) and any $a \in A$ the Taylor series $\tilde{\psi}_M (a) ={}$ $\sum\limits_{m=0}^{\infty} \psi_M(a^{(m)}) \frac{z^m}{m!}$ has nonzero radius of convergence depending on the element $a \in A$.
@article{FPM_2016_21_2_a4,
     author = {O. V. Gerasimova and Yu. P. Razmyslov},
     title = {Rolling simplexes and their {commensurability.~IV.} {(A~farewell} to arms!)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {145--156},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a4/}
}
TY  - JOUR
AU  - O. V. Gerasimova
AU  - Yu. P. Razmyslov
TI  - Rolling simplexes and their commensurability.~IV. (A~farewell to arms!)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 145
EP  - 156
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a4/
LA  - ru
ID  - FPM_2016_21_2_a4
ER  - 
%0 Journal Article
%A O. V. Gerasimova
%A Yu. P. Razmyslov
%T Rolling simplexes and their commensurability.~IV. (A~farewell to arms!)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 145-156
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a4/
%G ru
%F FPM_2016_21_2_a4
O. V. Gerasimova; Yu. P. Razmyslov. Rolling simplexes and their commensurability.~IV. (A~farewell to arms!). Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 145-156. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a4/

[1] Gerasimova O. V., Pogudin G. A., Razmyslov Yu. P., “Rolling simplexes and their commensurability. III (sootnosheniya Kapelli i ikh primeneniya v differentsialnykh algebrakh)”, Fundament. i prikl. matem., 19:6 (2014), 7–24 | MR

[2] Shafarevich I. R., Osnovy algebraicheskoi geometrii, MTsNMO, M., 2007 | MR