Rolling simplexes and their commensurability. IV. (A farewell to arms!)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 145-156
Cet article a éte moissonné depuis la source Math-Net.Ru
The text by pure algebraic reasons outlines why the spectrum of maximal ideals $\mathrm{Spec}_\mathbb{C} A$ of a countable-dimensional differential $\mathbb{C}$-algebra $A$ of transcendence degree $1$ without zero divisors is locally analytic, which means that for any $\mathbb{C}$-homomorphism $\psi_M \colon A \to \mathbb{C}$ ($M \in \mathrm{Spec}_{\mathbb C} A$) and any $a \in A$ the Taylor series $\tilde{\psi}_M (a) ={}$ $\sum\limits_{m=0}^{\infty} \psi_M(a^{(m)}) \frac{z^m}{m!}$ has nonzero radius of convergence depending on the element $a \in A$.
@article{FPM_2016_21_2_a4,
author = {O. V. Gerasimova and Yu. P. Razmyslov},
title = {Rolling simplexes and their {commensurability.~IV.} {(A~farewell} to arms!)},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {145--156},
year = {2016},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a4/}
}
TY - JOUR AU - O. V. Gerasimova AU - Yu. P. Razmyslov TI - Rolling simplexes and their commensurability. IV. (A farewell to arms!) JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 145 EP - 156 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a4/ LA - ru ID - FPM_2016_21_2_a4 ER -
O. V. Gerasimova; Yu. P. Razmyslov. Rolling simplexes and their commensurability. IV. (A farewell to arms!). Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 145-156. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a4/
[1] Gerasimova O. V., Pogudin G. A., Razmyslov Yu. P., “Rolling simplexes and their commensurability. III (sootnosheniya Kapelli i ikh primeneniya v differentsialnykh algebrakh)”, Fundament. i prikl. matem., 19:6 (2014), 7–24 | MR
[2] Shafarevich I. R., Osnovy algebraicheskoi geometrii, MTsNMO, M., 2007 | MR