Isomorphisms of groups of invertible elements of incidence algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 257-261
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper shows that isomorphisms of groups of invertible elements of incidence algebras imply isomorphisms of the partial orders defining the algebras.
@article{FPM_2016_21_2_a12,
author = {V. D. Shmatkov},
title = {Isomorphisms of groups of invertible elements of incidence algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {257--261},
year = {2016},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a12/}
}
V. D. Shmatkov. Isomorphisms of groups of invertible elements of incidence algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 257-261. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a12/
[1] Pomfre Zh., Makdonald B., “Avtomorfizmy gruppy $\mathrm{GL}_{n}$ nad lokalnym koltsom”, Avtomorfizmy klassicheskikh grupp, ed. Yu. I. Merzlyakov, Mir, M., 1976 | MR
[2] Shmatkov V. D., “Izomorfizmy algebr intsidentnosti”, Diskret. matem., 3:1 (1991), 133–144 | MR
[3] Abrams G., Haefner J., del Rio A., “The isomorphism problem for incidence rings”, Pacific J. Math., 187:2 (1999), 201–214 | DOI | MR | Zbl
[4] Spiegel E., O'Donnell C., Incidence Algebras, Chapman Hall/CRC Pure Appl. Math., 206, CRC Press, 1997