Elementary equivalence of endomorphism monoids of almost free $S$-acts
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 37-52

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the connection between elementary equivalence of endomorphism monoids of almost free $S$-acts (the acts that are unions of projective indecomposable cyclic $S$-acts) and equivalence (in first- or second-order logic) of original monoids.
@article{FPM_2016_21_2_a1,
     author = {E. I. Bunina and N. V. Yugay},
     title = {Elementary equivalence of endomorphism monoids of almost free $S$-acts},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {37--52},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a1/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - N. V. Yugay
TI  - Elementary equivalence of endomorphism monoids of almost free $S$-acts
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 37
EP  - 52
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a1/
LA  - ru
ID  - FPM_2016_21_2_a1
ER  - 
%0 Journal Article
%A E. I. Bunina
%A N. V. Yugay
%T Elementary equivalence of endomorphism monoids of almost free $S$-acts
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 37-52
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a1/
%G ru
%F FPM_2016_21_2_a1
E. I. Bunina; N. V. Yugay. Elementary equivalence of endomorphism monoids of almost free $S$-acts. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 37-52. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a1/