Elementary equivalence of endomorphism monoids of almost free $S$-acts
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 37-52
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the connection between elementary equivalence of endomorphism monoids of almost free $S$-acts (the acts that are unions of projective indecomposable cyclic $S$-acts) and equivalence (in first- or second-order logic) of original monoids.
@article{FPM_2016_21_2_a1,
author = {E. I. Bunina and N. V. Yugay},
title = {Elementary equivalence of endomorphism monoids of almost free $S$-acts},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {37--52},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a1/}
}
TY - JOUR AU - E. I. Bunina AU - N. V. Yugay TI - Elementary equivalence of endomorphism monoids of almost free $S$-acts JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 37 EP - 52 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a1/ LA - ru ID - FPM_2016_21_2_a1 ER -
E. I. Bunina; N. V. Yugay. Elementary equivalence of endomorphism monoids of almost free $S$-acts. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 2, pp. 37-52. http://geodesic.mathdoc.fr/item/FPM_2016_21_2_a1/