Monotone linear transformations on matrices over semirings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 105-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize linear transformations on matrices over commutative antinegative semirings that are monotone with respect to minus, star, and sharp partial orders.
@article{FPM_2016_21_1_a9,
     author = {A. E. Guterman and E. M. Kreines and Qing-Wen Wang},
     title = {Monotone linear transformations on matrices over semirings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {105--122},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a9/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - E. M. Kreines
AU  - Qing-Wen Wang
TI  - Monotone linear transformations on matrices over semirings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 105
EP  - 122
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a9/
LA  - ru
ID  - FPM_2016_21_1_a9
ER  - 
%0 Journal Article
%A A. E. Guterman
%A E. M. Kreines
%A Qing-Wen Wang
%T Monotone linear transformations on matrices over semirings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 105-122
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a9/
%G ru
%F FPM_2016_21_1_a9
A. E. Guterman; E. M. Kreines; Qing-Wen Wang. Monotone linear transformations on matrices over semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 105-122. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a9/

[1] Bisli L. B., Guterman A. E., “LP-problemy dlya rangovykh neravenstv nad polukoltsami: faktorizatsionnyi rang”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril., 13, 2004, 53–70

[2] Guterman A. E., “Monotonnye additivnye otobrazheniya matrits”, Matem. zametki, 81:5 (2007), 681–692 | DOI | MR | Zbl

[3] Beasley L., Guterman A., “Rank inequalities over semirings”, J. Korean Math. Soc., 42:2 (2005), 223–241 | DOI | MR | Zbl

[4] Ben-Israel A., Greville T., Generalized Inverses: Theory and Applications, Wiley, New York, 1974 | MR | Zbl

[5] Butkovič P., Max-Linear Systems: Theory and Applications, Springer Monographs Math., Springer, London, 2010 | DOI | MR

[6] Drazin M. P., “Natural structures on semigroups with involution”, Bull. Amer. Math. Soc., 84:1 (1978), 139–141 | DOI | MR | Zbl

[7] Farid F. O., Khan I. A., Wang Q.-W., “On matrices over arbitrary semiring and their generalized inverses”, Linear Algebra Its Appl., 439 (2013), 2085–2105 | DOI | MR | Zbl

[8] Glazek K., A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences, Springer Netherlands, 2002 | MR

[9] Hartwig R. E., “How to partially order regular elements”, Math. Japon., 25:1 (1980), 1–13 | MR | Zbl

[10] Khan I. A., Wang Q. W., “The Drazin inverses in an arbitrary semiring”, Linear Multilinear Algebra, 59:9 (2011), 1019–1029 | DOI | MR | Zbl

[11] Kim K. H., Boolean Matrix Theory and Applications, Pure Appl. Math., 70, Marcel Dekker, New York, 1982 | MR | Zbl

[12] Mitra S. K., “On group inverses and the sharp order”, Linear Algebra Appl., 92 (1987), 17–37 | DOI | MR | Zbl

[13] Mitra S. K., Bhimasankaram P., Malik S. B., Matrix Partial Orders, Shorted Operators and Applications, Ser. Algebra, 10, World Scientific, New York, 2010 | MR | Zbl

[14] Mitsch H., “A natural partial order on semigroups”, Proc. Amer. Math. Soc., 97:3 (1986), 384–388 | DOI | MR | Zbl

[15] Nambooripad K. S. S., “The natural partial order on a regular semigroup”, Proc. Edinburgh Math. Soc., 23 (1980), 249–260 | DOI | MR | Zbl

[16] Rakić D., Djordjević D., “Star, sharp, core and dual core partial order in rings with involution”, Appl. Math. Comput., 259 (2015), 800–818 | MR