Annihilators and finitely generated modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 79-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that $B + \mathrm{Ann}\, M = \mathrm{Ann}\, (M/MB)$ for every finitely generated right module $M$ over a strongly regular ring $A$ and every ideal $B$ of the ring $A$.
@article{FPM_2016_21_1_a6,
     author = {E. S. Golod and A. A. Tuganbaev},
     title = {Annihilators and finitely generated modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {79--82},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a6/}
}
TY  - JOUR
AU  - E. S. Golod
AU  - A. A. Tuganbaev
TI  - Annihilators and finitely generated modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 79
EP  - 82
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a6/
LA  - ru
ID  - FPM_2016_21_1_a6
ER  - 
%0 Journal Article
%A E. S. Golod
%A A. A. Tuganbaev
%T Annihilators and finitely generated modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 79-82
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a6/
%G ru
%F FPM_2016_21_1_a6
E. S. Golod; A. A. Tuganbaev. Annihilators and finitely generated modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 79-82. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a6/

[1] Golod E. S., “Zamechanie o kommutativnykh arifmeticheskikh koltsakh”, Fundament. i prikl. matem., 19:2 (2014), 21–23

[2] Goodearl K. R., Von Neumann Regular Rings, Pitman, London, 1979 | MR | Zbl

[3] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl