Annihilators and finitely generated modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 79-82
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that $B + \mathrm{Ann}\, M = \mathrm{Ann}\, (M/MB)$ for every finitely generated right module $M$ over a strongly regular ring $A$ and every ideal $B$ of the ring $A$.
@article{FPM_2016_21_1_a6,
author = {E. S. Golod and A. A. Tuganbaev},
title = {Annihilators and finitely generated modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {79--82},
year = {2016},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a6/}
}
E. S. Golod; A. A. Tuganbaev. Annihilators and finitely generated modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 79-82. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a6/
[1] Golod E. S., “Zamechanie o kommutativnykh arifmeticheskikh koltsakh”, Fundament. i prikl. matem., 19:2 (2014), 21–23
[2] Goodearl K. R., Von Neumann Regular Rings, Pitman, London, 1979 | MR | Zbl
[3] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl