Groups of quotients of semigroups of invertible nonnegative matrices over skewfields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 57-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that for a linearly ordered skewfield the groups of quotients of the semigroup $\mathrm G_n(\mathbb D)$ coincides with the group $\mathrm{GL}_n(\mathbb D)$ for $n \geq 3$.
@article{FPM_2016_21_1_a4,
     author = {E. I. Bunina and A. V. Mikhalev and V. V. Nemiro},
     title = {Groups of quotients of semigroups of invertible nonnegative matrices over skewfields},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {57--64},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a4/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - A. V. Mikhalev
AU  - V. V. Nemiro
TI  - Groups of quotients of semigroups of invertible nonnegative matrices over skewfields
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 57
EP  - 64
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a4/
LA  - ru
ID  - FPM_2016_21_1_a4
ER  - 
%0 Journal Article
%A E. I. Bunina
%A A. V. Mikhalev
%A V. V. Nemiro
%T Groups of quotients of semigroups of invertible nonnegative matrices over skewfields
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 57-64
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a4/
%G ru
%F FPM_2016_21_1_a4
E. I. Bunina; A. V. Mikhalev; V. V. Nemiro. Groups of quotients of semigroups of invertible nonnegative matrices over skewfields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 57-64. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a4/

[1] Bunina E. I., “Avtomorfizmy polugruppy neotritsatelnykh obratimykh matrits poryadka dva nad chastichno uporyadochennymi kommutativnymi koltsami”, Mat. zametki, 91:1 (2011), 3–12 | DOI

[2] Bunina E. I., Mikhalev A. V., “Avtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi elementami”, Fundament. i prikl. matem., 11:2 (2005), 3–23 | Zbl

[3] Bunina E. I., Mikhalev A. V., “Elementarnaya ekvivalentnost polugruppy obratimykh matrits s neotritsatelnymi elementami”, Fundament. i prikl. matem., 12:2 (2006), 39–53

[4] Bunina E. I., Nemiro V. V., “Gruppa chastnykh polugruppy obratimykh neotritsatelnykh matrits poryadka tri nad polyami”, Fundament. i prikl. matem., 18:3 (2013), 27–42

[5] Bunina E. I., Semenov P. P., “Avtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi elementami nad chastichno uporyadochennymi koltsami”, Fundament. i prikl. matem., 14:2 (2008), 69–100

[6] Bunina E. I., Semenov P. P., “Elementarnaya ekvivalentnost polugruppy obratimykh matrits s neotritsatelnymi elementami nad chastichno uporyadochennymi koltsami”, Fundament. i prikl. matem., 14:4 (2008), 75–85

[7] Maltsev A. I., “O vklyuchenii assotsiativnykh sistem v gruppy. II”, Mat. sb., 8:2 (1940), 251–264 | MR | Zbl

[8] Mikhalev A. V., Shatalova M. A., “Avtomorfizmy i antiavtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi elementami”, Mat. sb., 81:4 (1970), 600–609 | Zbl

[9] Semenov P. P., “Endomorfizmy polugrupp obratimykh neotritsatelnykh matrits nad uporyadochennymi koltsami”, Fundament. i prikl. matem., 17:5 (2011/2012), 165–178

[10] Semenov P. P., “Avtomorfizmy polugruppy obratimykh matrits s neotritsatelnymi tselymi elementami”, Mat. sb., 203:9 (2012), 117–132 | DOI | MR | Zbl

[11] Fayans V. G., “Gruppa chastnykh polugruppy neosobennykh matrits s neotritsatelnymi elementami”, Uspekhi mat. nauk, 28:6 (1973), 221–222 | MR