Groups of quotients of semigroups of invertible nonnegative matrices over skewfields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 57-64
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that for a linearly ordered skewfield the groups of quotients of the semigroup $\mathrm G_n(\mathbb D)$ coincides with the group $\mathrm{GL}_n(\mathbb D)$ for $n \geq 3$.
@article{FPM_2016_21_1_a4,
author = {E. I. Bunina and A. V. Mikhalev and V. V. Nemiro},
title = {Groups of quotients of semigroups of invertible nonnegative matrices over skewfields},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {57--64},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a4/}
}
TY - JOUR AU - E. I. Bunina AU - A. V. Mikhalev AU - V. V. Nemiro TI - Groups of quotients of semigroups of invertible nonnegative matrices over skewfields JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 57 EP - 64 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a4/ LA - ru ID - FPM_2016_21_1_a4 ER -
%0 Journal Article %A E. I. Bunina %A A. V. Mikhalev %A V. V. Nemiro %T Groups of quotients of semigroups of invertible nonnegative matrices over skewfields %J Fundamentalʹnaâ i prikladnaâ matematika %D 2016 %P 57-64 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a4/ %G ru %F FPM_2016_21_1_a4
E. I. Bunina; A. V. Mikhalev; V. V. Nemiro. Groups of quotients of semigroups of invertible nonnegative matrices over skewfields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 57-64. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a4/