Specific properties of one-dimensional pseudorepresentations of groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 247-255

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain assertions concerning general properties of one-dimensional (not necessarily bounded) pseudorepresentations of groups. In particular, we obtain a quantitative condition on the numerical defect of a given pseudorepresentation which is sufficient for the pseudorepresentation to be pure, i.e., for the restriction of the given pseudorepresentation to every amenable subgroup be an ordinary character of this subgroup.
@article{FPM_2016_21_1_a20,
     author = {A. I. Shtern},
     title = {Specific properties of one-dimensional pseudorepresentations of groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {247--255},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Specific properties of one-dimensional pseudorepresentations of groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 247
EP  - 255
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/
LA  - ru
ID  - FPM_2016_21_1_a20
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Specific properties of one-dimensional pseudorepresentations of groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 247-255
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/
%G ru
%F FPM_2016_21_1_a20
A. I. Shtern. Specific properties of one-dimensional pseudorepresentations of groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 247-255. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/