Specific properties of one-dimensional pseudorepresentations of groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 247-255
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain assertions concerning general properties of one-dimensional (not necessarily bounded) pseudorepresentations of groups. In particular, we obtain a quantitative condition on the numerical defect of a given pseudorepresentation which is sufficient for the pseudorepresentation to be pure, i.e., for the restriction of the given pseudorepresentation to every amenable subgroup be an ordinary character of this subgroup.
@article{FPM_2016_21_1_a20,
author = {A. I. Shtern},
title = {Specific properties of one-dimensional pseudorepresentations of groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {247--255},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/}
}
A. I. Shtern. Specific properties of one-dimensional pseudorepresentations of groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 247-255. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/