Specific properties of one-dimensional pseudorepresentations of groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 247-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain assertions concerning general properties of one-dimensional (not necessarily bounded) pseudorepresentations of groups. In particular, we obtain a quantitative condition on the numerical defect of a given pseudorepresentation which is sufficient for the pseudorepresentation to be pure, i.e., for the restriction of the given pseudorepresentation to every amenable subgroup be an ordinary character of this subgroup.
@article{FPM_2016_21_1_a20,
     author = {A. I. Shtern},
     title = {Specific properties of one-dimensional pseudorepresentations of groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {247--255},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Specific properties of one-dimensional pseudorepresentations of groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 247
EP  - 255
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/
LA  - ru
ID  - FPM_2016_21_1_a20
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Specific properties of one-dimensional pseudorepresentations of groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 247-255
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/
%G ru
%F FPM_2016_21_1_a20
A. I. Shtern. Specific properties of one-dimensional pseudorepresentations of groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 247-255. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a20/

[1] Shtern A. I., “Psevdokharakter, opredelennyi simvolom Rademakhera”, UMN, 45:3 (1990), 197–198 | MR | Zbl

[2] Shtern A. I., “Kvazipredstavleniya i psevdopredstavleniya”, Funkts. analiz i ego pril., 25:2 (1991), 87–91

[3] Shtern A. I., “Ob operatorakh v prostranstvakh Freshe, podobnykh izometriyam”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1991, no. 4, 94–96

[4] Shtern A. I., “Konechnomernye kvazipredstavleniya svyaznykh grupp Li i gipoteza Mischenko”, Fundament. i prikl. matem., 13:7 (2007), 85–225

[5] Shtern A. I., “Variant teoremy Van der Vardena i dokazatelstvo gipotezy Mischenko dlya gomomorfizmov lokalno kompaktnykh grupp”, Izv. RAN. Ser. matem., 72:1 (2008), 183–224 | DOI | MR | Zbl

[6] Johnson B. E., “Approximate diagonals and cohomology of certain annihilator Banach algebras”, Amer. J. Math., 94 (1972), 685–698 | DOI | MR | Zbl

[7] Johnson B. E., “Approximately multiplicative functionals”, J. London Math. Soc. (2), 34:3 (1986), 489–510 | DOI | MR | Zbl

[8] Johnson B. E., “Approximately multiplicative maps between Banach algebras”, J. London Math. Soc. (2), 37:2 (1988), 294–316 | DOI | MR | Zbl

[9] Shtern A. I., “Quasisymmetry. I”, Russ. J. Math. Phys., 2:3 (1994), 353–382 | MR | Zbl

[10] Shtern A. I., “Triviality and continuity of pseudocharacters and pseudorepresentations”, Russ. J. Math. Phys., 5:1 (1997), 135–138 | MR | Zbl

[11] Shtern A. I., “Quasisymmetry. II”, Russ. J. Math. Phys., 14:3 (2007), 332–356 | DOI | MR | Zbl

[12] Shtern A. I., “A nontrivial Banach space quasirepresentation whose nonzero defect operators are nondegenerate is bounded”, Adv. Stud. Contemp. Math. (Kyunshang), 25:4 (2015), 553–556 | Zbl

[13] Shtern A. I., “Exponential stability of quasihomomorphisms into Banach algebras and a Ger–Šemrl theorem”, Russ. J. Math. Phys., 22:1 (2015), 141–142 | DOI | MR | Zbl