On partially $\mathcal K$-ordered rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 225-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new notion of a partial ordering for rings is considered. Properties of arbitrary partially right $\mathcal K$-ordered rings are investigated. A series of results for linearly right $\mathcal K$-ordered rings is obtained. Some theorems are proved for ideals of those rings.
@article{FPM_2016_21_1_a18,
     author = {E. E. Shirshova},
     title = {On partially $\mathcal K$-ordered rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {225--239},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a18/}
}
TY  - JOUR
AU  - E. E. Shirshova
TI  - On partially $\mathcal K$-ordered rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 225
EP  - 239
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a18/
LA  - ru
ID  - FPM_2016_21_1_a18
ER  - 
%0 Journal Article
%A E. E. Shirshova
%T On partially $\mathcal K$-ordered rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 225-239
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a18/
%G ru
%F FPM_2016_21_1_a18
E. E. Shirshova. On partially $\mathcal K$-ordered rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 225-239. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a18/

[1] Bervinov D. A., Shirshova E. E., “Chastichnye $K$-poryadki v koltsakh”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XIII Mezhdunar. konf., posv. 85-letiyu Sergeya Sergeevicha Ryshkova (Tula, 25–30 maya 2015 goda), Tula, 2015, 60–61

[2] Bibaeva V. N., Shirshova E. E., “O lineino $K$-uporyadochennykh koltsakh”, Fundament. i prikl. matem., 17:4 (2011/2012), 13–23

[3] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[4] Kopytov V. M., “Uporyadochenie algebr Li”, Algebra i logika, 11:3 (1972), 295–325 | MR | Zbl

[5] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR

[6] Kochetova Yu. V., “O nekotorykh svoistvakh idealov reshetochno uporyadochennykh algebr Li”, Vestn. SamGU. Estestvennonauch. ser. Matematika, 57:7 (2007), 73–83

[7] Kochetova Yu. V., “Pervichnye i polupervichnye reshetochno uporyadochennye algebry Li”, Fundament. i prikl. matem., 14:7 (2008), 137–143

[8] Kochetova Yu. V., “O nizhnem slabo razreshimom $l$-radikale reshetochno uporyadochennykh algebr Li”, Fundament. i prikl. matem., 14:8 (2008), 137–149

[9] Kochetova Yu. V., “Pervichnyi radikal reshetochno uporyadochennykh algebr Li”, UMN, 63:5 (2008), 191–192 | DOI | MR | Zbl

[10] Kochetova Yu. V., Shirshova E. E., “O gomomorfizmakh chastichno uporyadochennykh algebr Li”, Izbrannye voprosy algebry, Sb. statei, posvyasch. pamyati N. Ya. Medvedeva, Izd-vo Altaiskogo un-ta, Barnaul, 2007, 131–142

[11] Kochetova Yu. V., Shirshova E. E., “O lineino uporyadochennykh lineinykh algebrakh”, Fundament. i prikl. matem., 15:1 (2009), 53–63

[12] Kochetova Yu. V., Shirshova E. E., “Pervichnyi radikal reshetochno $\mathcal K$-uporyadochennykh algebr”, Fundament. i prikl. matem., 18:1 (2013), 85–158

[13] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965 | MR

[14] Shirshova E. E., “Leksikograficheskie rasshireniya i $pl$-gruppy”, Fundament. i prikl. matem., 1:4 (1995), 1133–1138 | MR | Zbl

[15] Shirshova E. E., “O pervichnykh radikalakh i spleteniyakh chastichno uporyadochennykh grupp”, Fundament. i prikl. matem., 16:8 (2010), 245–261

[16] Shirshova E. E., “Gomomorfizmy $pl$-grupp”, Fundament. i prikl. matem., 3:1 (1997), 303–314 | MR | Zbl

[17] Conrad P., “Representation of partially ordered Abelian groups as groups of real valued functions”, Acta Math., 116 (1966), 199–221 | MR | Zbl