On partially $\mathcal K$-ordered rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 225-239
Voir la notice de l'article provenant de la source Math-Net.Ru
A new notion of a partial ordering for rings is considered. Properties of arbitrary partially right $\mathcal K$-ordered rings are investigated. A series of results for linearly right $\mathcal K$-ordered rings is obtained. Some theorems are proved for ideals of those rings.
@article{FPM_2016_21_1_a18,
author = {E. E. Shirshova},
title = {On partially $\mathcal K$-ordered rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {225--239},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a18/}
}
E. E. Shirshova. On partially $\mathcal K$-ordered rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 225-239. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a18/