On the varieties of commutative metabelian algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 165-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents new results on varieties of commutative metabelian algebras over a field of zero characteristic. We study the structure of the multilinear part of the variety of all commutative metabelian algebras as a module of the symmetric group. Two almost nilpotent varieties are introduced and studied in this class of algebras. We prove the nonexistence of other almost nilpotent commutative metabelian varieties of subexponential growth.
@article{FPM_2016_21_1_a13,
     author = {S. P. Mishchenko and N. P. Panov and Yu. Yu. Frolova and Trang Nguyen},
     title = {On the varieties of commutative metabelian algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {165--180},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a13/}
}
TY  - JOUR
AU  - S. P. Mishchenko
AU  - N. P. Panov
AU  - Yu. Yu. Frolova
AU  - Trang Nguyen
TI  - On the varieties of commutative metabelian algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2016
SP  - 165
EP  - 180
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a13/
LA  - ru
ID  - FPM_2016_21_1_a13
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%A N. P. Panov
%A Yu. Yu. Frolova
%A Trang Nguyen
%T On the varieties of commutative metabelian algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2016
%P 165-180
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a13/
%G ru
%F FPM_2016_21_1_a13
S. P. Mishchenko; N. P. Panov; Yu. Yu. Frolova; Trang Nguyen. On the varieties of commutative metabelian algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 165-180. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a13/

[1] Mischenko S. P., “Mnogoobraziya lineinykh algebr kodliny odin”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2010, no. 1, 25–30

[2] Mischenko S. P., Shulezhko O. V., “O pochti nilpotentnykh mnogoobraziyakh v klasse kommutativnykh metabelevykh algebr”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 2015, no. 3(125), 21–28

[3] Mischenko S. C., “O roste mnogoobrazii kommutativnykh lineinykh algebr”, Fundament. i prikl. matem., 14:5 (2008), 165–170

[4] Chang N. T. K., Frolova Yu. Yu., “Pochti nilpotentnye kommutativnye metabelevy mnogoobraziya, rost kotorykh ne vyshe eksponentsialnogo”, Mezhdunar. konf. «Maltsevskie chteniya», Tezisy dokladov (Novosibirsk, 2014), 113

[5] Giambruno A., Mishchenko S., “Degrees of irreducible characters of the symmetric group and exponential growth”, Proc. Amer. Math. Soc., 144 (2016), 943–953 | DOI | MR | Zbl

[6] Giambruno A., Mishchenko S., Valenti A., Zaicev M., “Polynomial codimension growth and the Specht problem”, J. Algebra, 469 (2017), 421–436 | DOI | MR | Zbl

[7] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Math. Surv. Monogr., 122, Amer. Math. Soc., Providence, 2005 | DOI | MR | Zbl

[8] Mishchenko S., Valenti A., “On almost nilpotent varieties of subexponential growth”, J. Algebra, 423 (2015), 902–915 | DOI | MR | Zbl

[9] Mishchenko S., Valenti A., “Varieties with at most quadratic growth”, Israel J. Math., 178 (2010), 209–228 | DOI | MR | Zbl

[10] Petrogradsky V. M., “Enumeration of algebras close to absolutely free algebras and binary trees”, J. Algebra, 290 (2005), 337–371 | DOI | MR | Zbl