Finite combinatorial generation of metabelian $T$-ideal
Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 145-163
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work, we develop our idea on the construction of a system of combinatorial generators in a $T$-ideal of a free associative algebra, which is a full analogy of a Gröbner–Shirshov basis in a polynomial ideal. We prove a theorem on multilinear monomials that enables us to establish the existence of a finite set of combinatorial generators in a metabelian $T$-ideal.
@article{FPM_2016_21_1_a12,
author = {V. N. Latyshev},
title = {Finite combinatorial generation of metabelian $T$-ideal},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {145--163},
year = {2016},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a12/}
}
V. N. Latyshev. Finite combinatorial generation of metabelian $T$-ideal. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 145-163. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a12/
[1] Latyshev V. N., “K teoreme Regeva o tozhdestvakh tenzornogo proizvedeniya PI-algebr”, UMN, 27:4(166) (1972), 213–214 | MR | Zbl
[2] Latyshev V. N., “Chastichno uporyadochennye mnozhestva i nematrichnye mnogoobraziya assotsiativnykh algebr”, Algebra i logika, 18:1 (1976), 53–70
[3] Latyshev V. N., “Kombinatornye porozhdayuschie polilineinykh polinomialnykh tozhdestv”, Fundament. i prikl. matem., 12:2 (2006), 101–110 | MR
[4] Latyshev V. N., “Konechnost standartnogo bazisa $T$-ideala, soderzhaschego lievu nilpotentnost indeksa $4$”, Fundament. i prikl. matem., 17:5 (2012), 75–85
[5] Higman G., “Ordering by divisibility in abstract algebras”, Proc. London Math. Soc., s3-2:1 (1952), 326–336 | DOI | MR | Zbl